Exam.		Back	
Level	BE	Full Marks	80
Programme	IBEL, BEX, BEI, BGE	BCT, Pass Marks	32
Year / Part	П/П	Time	3 hrs.

2079 Ashwin

Subject	: - Applied	Mathematics	(SH 551)
and a reason of the part of the part of the second s			~~~~~~_/

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.

atch)

30

2

hrs.

he

85 nd

ıg

at

ıt

)t

3+5

[3+5]

[8]

[3+5]

[2+6] [8]

[4×2]

The figures in the margin indicate Full Marks.

Assume suitable data if necessary.

	Show that $u(x, y) = \sin x \cosh y$ is a harmonic function. Also find its harmonic conjugate $v(x, y)$ such that $u + iv$ is analytic.	e [5]
11	Define Bilinear transformation. Find the Bilinear transformation that maps $z_1 = -2$, $z_2 = 0$ $z_3 = 2$ into the points $\omega_1 = 0$, $\omega_2 = i$ and $\omega_3 = -i$ respectively.	, [1+4]
	State and prove Cauchy's integral theorem.	[5]
	State Taylor's theorem for function $f(z)$ of complex variable z. When does Taylor's series reduce to Maclaurin's series? Find Maclaurin's series expansion of the function $f(z) = tanz$ upto four terms.	1+2+2]
	Evaluate $\oint_{c} \frac{2z-1}{z(z+1)(z-3)} dz$, where C is the circle $ z = 2$ by residue method.	[5]
	$\int 2\pi d\theta$	
	$\int_{0}^{1} \frac{1}{2 + \cos\theta}$ by contour integration in the complex plane.	[5]
	Define Z-Transform. Find the Z-Transform of e ^{-bt} sin ωt .	151
	and prove final value theorem for Z-Transform.	[5]
	$2z^2 + 2z$	[3]
	Find the inverse z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$ by using partial fraction method.	[5]
	the difference equation $x (k + 2) - 3x (k + 1) + 2x (k) = 4^k$ given that $x(0) = 0$, = 1.	[5]
	Eightly stretched string with fixed ends, $x = 0$ and $x = l$ is initially in position given by $u_0 \sin\left(\frac{3\pi x}{l}\right)$. If it is released from rest in this position, find the displacement at	
	ime t at distance x from one end.	F10 7
	Derive one dimensional heat equation and find its possible solutions.	[10]
	that the Fourier Cosine integral representation of $f(x) = e^{-x}$ is $\int_0^\infty \frac{\cos \omega x}{1 + \omega^2} d\omega = \frac{\pi}{2} e^{-x}$.	[5]

and the Fourier sine transform of e^{-x} , $x \ge 0$ and hence by Parseval's identity, show that $=\frac{x^2}{(1+x^2)^2}dx = \frac{\pi}{4}.$

[5]

TRIBHUVAN UNIVERSITY	Exam.	3	Back	
STITUTE OF ENGINEERING	Level	BE	Full Marks	80
amination Control Division	Programme	BEL, BEX, BCT, BGE	Pass Marks	32
2079 Jestha	Year / Part	II / II	Time	3 hrs.

Candidates are required to give their answers in their own words as far as practicable. Itempt <u>All</u> questions.

The figures in the margin indicate <u>Full Marks</u>. Losume suitable data if necessary.

2)	State and prove Cauchy-Reimann equations in cartesian forms.	[5]
5)	Show that $u = sinxcoshy + 2cosxsinhy + x^2 - y^2 + 4xy$ is harmonic and find corresponding analytic function.	[1+4]
a)	Find the linear transformation which maps the points $z_1 = 0$, $z_2 = -1$, $z_3 = \infty$ into the points $w_1 = 1$, $w_2 = i$, $w_3 = -1$,	[5]
5)	State Cauchy's integral formula. Use it to evaluate:	[1+4]
	$\int_{C} \frac{e^{z}}{(z-1)(z-3)} dz \text{ where } c: z < 2.$	
8	State Taylor's theorem for complex variable. Expand the Laurent's series of the	

function $f(z) = \frac{1}{z^2 - 3z + 2}$ in the region 1 < |z| < 2. [1+4]

- By using Cauchy Residue theorem evaluate $\int_C \tan z \, dz$ where c is circle |z| = 2. [5]
- State and prove final value theorem for z-transform. [1+4]
- Obtain z-transform of sin wt and hence evaluate z-transform of ae^{-at} sin wt. [5]

Obtain the inverse z-transform of $X(z) = \frac{2z}{(z+1)(z^2+1)}$ by using partial fraction method. [5]

Solve the difference equation: x(k + 2) + 2x (k + 1) + 3x (k) = 0 given that x(0) = 0and x(1) = 2. [5]

[10]

serve one dimensional wave equation and solve it completely.

Drive one dimensional heat equation: $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial^2 x}$ under boundary condition $\frac{\partial u}{\partial x} = 0$ du = 0 and x = l and the initial condition u(x, 0) = x for 0 < x < l. [10]

Find the Fourier sine transform of e^{-x} , $x \ge 0$ and show that $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}$ where m > 0. [3+2]

Solve the integral equation:
$$\int_{-\infty}^{\infty} y(u) y(x-u) du = e^{-x^2}$$
. [5]

TRIDUUWANI UNIVERSITY	Exam.	R	tegular		SIIIO
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80	minati
Examination Control Division	Programme	BEL,BEX,BCT BEI,BGE	Pass Marks	32	
2078 Chaitra	Year / Part	II / II	Time	3 hrs.	

Subject: - Applied Mathematics (SH 551) Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt <u>All</u> questions. sume suita The figures in the margin indicate Full Marks. Assume suitable data if necessary. V 1. Define an analytic function f(z) of complex variable z at a point. If f(z) = u(x,y) + i v(x,y)[1--is analytic, show that $u_x = v_y$ and $u_y = -v_x$. 2. Define conformal mapping. Find the linear transformation which maps the points $z=0,1,\infty$ in to the points w=-3, -1, 1 respectively. 5 3. State and proof Cauchy's Integral theorem. 4. Obtain the Taylor's series expansion of the complex function $f(z) = \frac{z+1}{(z-3(z-4))}$ about 5 the center z = 2 up to four term. 5. State Cauchy residue theorem. Apply it to evaluate $\int_{c} \frac{4-3z}{z(z-1)(z-2)} dz$ where C is the |z|=2.[1+4] circle $|z| = \frac{3}{2}$.

6. Evaluate integrals $\int_0^{\pi} \frac{1}{3+2\cos\theta} d\theta$ by contour integration.

7. If x(t) = 0 for t < 0, Z[x(t)] = X(z) for $t \ge 0$, then prove that $Z[e^{-at} x(t)] = X(ze^{aT})$.

- Obtain the Z- transform of (i) te^{-at} (ii) sin at 8.
- 9. Obtain the inverse Z- transform of X(z) = $\frac{(1-e^{-aT})z}{(z-1)(z-e^{-aT})}$ where T is the sampling period.

10. Solve the difference equation $y_{n+2} - 4 y_{n+1} + 4y_n = 0$ with given condition $y_0 = 0$, $y_1 = 1$. [5] 11. A tightly stretched string with fixed ends x = 0 and $x = \ell$ is initially in position given by $u(x,0) = u_0 \sin^3 \frac{\pi x}{\ell}$ If it is released from rest in this position, find the displacement at any time t at any distance x from one end.

- 12. Derive one dimensional heat equation and solve it completely.
- 13. Obtain the fourier sine and cosine integral of f(x) = x for 0 < x < a,

=0 for x > a.

14. Find the fourier cosine transform of $f(x) = e^{-x}$, x > 0 and hence parseval's identity, show

that
$$\int_0^\infty \frac{1}{(1+x^2)^2} dx = \frac{\pi}{4}$$

Starting [5] $\int_0^\infty \frac{1}{(1+1)^2}$

indidates a empt All q e figures i

TRIBH

01

20

Define H hence co

Find the w = 1, i,

State and

State La

series in

Using Ca

Using co

State and

5

[5]

[2.5+2.5]

Find the

(i) 1

Using th

- X(z) =
- Using th

y (k+2

ive one

- [10] od of le dy state
- [10] ance x f

5 Find th

show th

arks	80
arks	32
	3 hrs.

able.

+ i v(x,y) ne points

-4) about

is the

[2.5-1

ampling

given by

nt at any

= 1.

ination Control Division	Programme	BEL, BEI, BEX, BCT, BGE	Pass Marks	32
2078 Poush	Year / Part	II / II	Time	3 hrs
Subject - Applie	d Mathemati	cs (SH 551)		
Edates are required to give their ans pt <u>All</u> questions. Squres in the margin indicate <u>Full 1</u> we suitable data if necessary.	wers in their ov <u>Marks</u>	wn words as far as	practicable.	
Define Harmonic function. Show that the construct an analytic function is	at the function $f = u(x, y) + iv$	$u(x, y) = e^x \sin y$ $(x, y).$	is harmonic ar	ıd
Find the linear fractional transform $= 1$, i, -4. Also find the fixed points	nation that ma s of the transfor	ups $z = 2$, i, -2 mation.	into the poin	ts
State and prove Cauchy Integral theor	rem.			
The Laurent's theorem and expand	the function	$f(z) = \frac{z^2 + 1}{(z - 1)(z - 2)}$, as a Laurer	ıt
bing Cauchy's residue theorem, eval	luate the integr	al $\int_C \tan z dz$ when	re c is the circl	e
= =2.			the first of the	
bing contour integration, evaluate the	e integral $\int_0^{2\pi} \frac{1}{3}$	$\frac{d\theta}{d\theta}$	0≤1	
ate and prove final value theorem for	r z-transform.	hin hid 3 we ap	confiction bid	••]
and the z-transform of the following s	equences for k	≥ 0:		1
(i) k a^k (ii) sin k θ		Charles and the		
ing the partial fraction decompositi	on method, fin	d the inverse z-tra	ansform of the	-
$z = \frac{3z^3 + z}{(z + z^2)^2}$			america a	Į
$(z-1)^{-}(z-2)$		in Alexandello burn		
k = 0 and $k = 0$ and $k = 0$	the following ($th = 0$)	lifference equation	1:	
(x + 2) - 4y((x + 1) + 3y(x) - 2) = 0, W	$\lim_{x \to 0} y(0) = 0, y(0)$	(1) = 1.		1
length I has its and at A and P a	solve it compl	elely.		[1]
state prevails. If B is suddenly real x from the end A at time t.	duced to 0°C,	then find the ten	aperature at a	[1(
In the Fourier sine transform of the fourier that $\int_0^\infty \frac{\alpha \sin(\alpha x)}{\alpha^2 + \beta^2} d\alpha = \frac{\pi}{2} e^{-mx}$	function f(x) =	= e ^{-m} (x > 0, m >	0) and hence	[5
ring from the Fourier cosine tran	sform of f(x)	= e^{-x} for x >	0, show that	
$1 dx = \pi$				T.C

Exam.

Level

1 20-20

BEL, BEI, BEX,

BE

Back

Full Marks

80

TRIBHUVAN UNIVERSITY

STITUTE OF ENGINEERING

y, show

TRIBHUVAN UNIVERSITY	Exam.		Back	
Examination Control Division	Level	BE BEV	· Full Marks	80
2000 D 1 L DIVISION	Programme	BCT, BGE	Pass Marks	32
2078 Baishakh	Year / Part	II / II	Time	3 hrs.
Subject: - Applie	d Mathemati	cs (SH 551)	an a	
 Candidates are required to give their ans Attempt <u>All</u> questions. The figures in the margin indicate <u>Full</u> Assume suitable data if necessary. 	wers in their ou <u>Marks</u> .	vn words as far	as practicable.	in ja ina
 a) Show that the function u = e^x cosy is construct the corresponding analytic 	harmonic, find	its harmonic co	onjugate and he	ince
 b) Find the linear transformation which w₁=1, w₂=i, w₃=-1. 	maps the poin	ts z ₁ =2, z ₂ =i, z ₃	=-2 into the po	[1+3+1] ints [5]
2. a) State Cauchy's Integral formula. Use	it to evaluate:	$\int \frac{e^z}{(z-1)(z-3)} dz$	where $c: z = 2$	2. [1+4]
b) Expand $f(z) = \cos z$ in Talyor's series.	about $z = \frac{\pi}{2}$.			[5]
3. a) State Cauchy's Residue theorem. Use	it to evaluate:	∫ <i>tan zdz</i> where	c is circle z =2.	. [5]
b) Evaluate by using contour integration	in a complex p	lane: $\oint_{0}^{2\pi} \frac{2dt}{2}$	9	[5]
4. a) Find the z-transform of:		0 2+00		[2×9-5]
(i) $te^{-\alpha t}, t \ge 0$ (ii) sinct		of od) sheet are	no integration	
b) State initial value theorem for z-transf	orm. Find the	nitial value x(0) and x(1) for	the
function: $X(z) = \frac{(1 - e^{-T})z^{-1}}{2}$	the abies	Bar Tradada		[1+4]
$(1-z^{-1})(1-e^{-T}z^{-1})$	-1)		Autor .	[[[1+4]
i. a) Find the inverse z-transform of $\frac{1}{(z+1)}$	$\frac{z}{r^{2}(z-1)}$.		ngtanit lann	[5]
b) Solve the difference equation r/k	(2-1) +2)- $x(b+1)$	+025-161-	(h) airen it	
x(0) = 1 and $x(1) = 2$ and $u(k)$ is unit	t step function.	+0.23x(k)=l	(k) given th	[5]
. Derive one dimensional wave equation and	solve it compl	etely.		[5+5]
. A rectangular plate with insulated surface width introducing an appreciable error. If	es is 10cm wid the temperatur	le and so long e along the sh	compared to ort edge $y = 0$	itš is
given by $U(x,0) = \begin{pmatrix} 20x, & 0 < x \le 2\\ 20(10-x), & 5 < x < 1 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 0 \end{pmatrix}$ while the t	wo long edges	x=0 and x=10	as
well as the other, short edges are kept at point (x,y) of the plate.	0°C. Find the	steady state ter	mperature at ar	ny [10]
a) Obtain the Provincial and a second	$\cos x$, for $ x <$	$\frac{\pi}{2}$		
a) Obtain the Pourier integral of $f(x) = \begin{cases} \\ \\ \\ \\ \end{cases}$	0, for $ x >$	$\frac{\pi}{2}$; [5]
b) Show that the Fourier Cosine	Integral repr	resentation of	$f(x) = e^{-x}$	is [.]
f cos ax , T	34			

Back	THE THE PARTY OF THE PARTY	Exam.		egular	
Full Marks	TE OF ENGINEERING	Level	BE	Full Marks	80
Pass Marks 🔳	ion Control Division	Programme	BEL, BEX, BCT,	Pass Marks	32
lime	2027 Chaitra	Year / Part		Time	3 hrs.
A CARACTER AND A CARACTER	2077 Chante				
acticable.	Subject: - Appl	ied Mathema	tics (SH 551)	. 11	
te and hence	Edates are required to give their a not <u>All</u> questions. Egures in the margin indicate <u>Fu</u> ne suitable data if necessary.	nswers in their <u>11 Marks</u> .	own words as far a	s practicable.	
o the points	State Cauchy-Riemann equation i	n polar form. F	Prove that $f(z) = z $	is not an ana	lytic []+-
c: z = 2.	Find the linear transformation wh -3, -1, 1 respectively. Find also fix	ich maps the p ted point of the	oints $z = 0, 1, \infty$ in transformation.	nto the points	W = [4+
Section (Des	State and prove Cauchy's Integral	Formula.			LT 1
	Find the Laurent's series of $f(x)$	$=\frac{z^2-1}{(z+2)(z+3)}$	$\frac{1}{2}$ in the region 2 <	: z < 3.	[:
c 2 =2.	State Cauchy Residue theorem an	nd hence evalu	ate the integral \int_{C}^{-}	$\frac{z-1}{(z+1)^2(z-2)}$	-dz ')
	where $C : z-i = 2$.				L1+
.[2×1=	Using counter Integration, evaluat	$e \int_0^{2\pi} \frac{1}{2 + \cos\theta}$	$d\theta$ in the complex	plane.	[.
	State and prove initial value theory	em of z-transfo	rm.		I.
) for the	Find the z-transform of the follow	ing sequence fo	or $t \ge 0$.		[2.5+2.
1 [1	i) te ^{-at} (ii) sinat				
	Find the inverse z-transform of the	e function $\frac{1}{(1-1)}$	$\frac{2z^3+z}{2)^2(z-1)}$.		[
n that	Solve the difference equation $r(0) = 1$ $r(1) = 0$.	x(k+2)-4x((k+1) + 4x(k) = 0	with condi	tions [
	and dimensional heat equation	and solve it co	mpletely.		[5+
[5+5]	string is stretched and fastened to	two points apar	t. Motion is started	l by displacin	g the
= 0 is	in the form $u(n, 0) = u_0 \sin \frac{\pi x}{t}$	from which it i	s released at time	t=0. Show the	it the
10 as	Seplacement at any point at a dis	stance x from	one end at a tir	ne t is give	n by [1
tany	$u(x,t) = u_0 \sin \frac{1}{l} \cos \frac{1}{l} \cdot \frac{1}{l}$				
- L	Define the complex form of Four	rier integral of	a given function we have: $f(x) = \int_{-\infty}^{\infty} f(x) dx$	$\begin{array}{c c} \text{ith usual note} \\ if & x < l \\ 0 & \text{if } & x > l \end{array}$	and
E	Find the Fourier integral represe	Interion of ento 1		() (+ (- 1)	
-x is	hence evaluate $\int_0^\infty \frac{\sin w}{w} dw$.			1 4 4	[]+3+
	Find the Fourier sine transform	nation of f(x)=	envi and hence eva	aluate the int	egiai

TRIBHUVAN UNIVERSITY

2076 Baisakh

Exam.	A CONTRACTOR		
Level	BE	Full Marks	80
Programme	BEL, BEX, BCT, BGE	Pass Marks	32
Year / Part	II / II	Time	3 hrs.

[3+2]

[5] [5]

[5]

Subject: - Applied Mathematics (SH 551)

didates are required to give their answers in their own words as far as practicable.

figures in the margin indicate Full Marks.

suitable data if necessary.

In polar form Cauchy-Riemann equations for function of complex variable. [5]
 In the linear fractional transformation which maps the points z=0,1,∞ into the points z=0,1,∞ into the points z=0,1,1 respectively. [5]
 In Complex integration. How does it differ from real integration? Derive Cauchy [1+1+3]

Laurent's Series for the function of complex variable. Obtain Taylor's series for [1+4]

$$f(z) = \frac{z}{z^2 + 4}$$
 about z=i

Cauchy residue theorem. Apply it to evaluate $\oint_{c} \tan z dz$, where c is the region |z|=2. [1+4]

chate integral
$$\int_0^{2\pi} \frac{d\theta}{a + \sin \theta}$$
; a>1 by contour integration in complex plane. [5]

 $\sin z$ -transform of sin ωt and hence obtain z-transform of e^{at} sin ωt .

the inverse z-transform of X(z) =
$$\frac{z^2}{(z-1)^2(z-e^{-nT})}$$
. [5]

and prove shifting to the right theorem for z-transform.

e the difference equation:

(k+2)-x(k+1)+0.25x(k)=u(k) where x(0)=1 and x(1)=2 and u(k) is a unit step ation; by z-transform method.

Fourier integral of the function

$$\mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{x} < 0 \\ e^{-\mathbf{x}} & \text{if } \mathbf{x} < 0 \end{cases}$$

The Fourier Sine transform of e^{-x} , $x \ge 0$ and hence show that $\int_0^\infty \frac{x^2}{(1+x^2)^2} dx = \frac{\pi}{4}$ [5]

the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with the given boundary conditions; u(0,t)=0, $\left(\frac{\partial u}{\partial t}\right) = 2(t - u^2)$ [10]

$$=0, u(x,0)=0 \text{ and } \left(\frac{\partial u}{\partial t}\right)_{t=0} = 3(Lx - x^2).$$
[10]

2075 Bhadra

Exam.	Regular				
Level	BE	Full Marks	80		
Programme	BEL,BEX, BCT, BGE	Pass Marks	32		
Year / Part	II / II	Time	3 hrs.		

Subject: - Applied Mathematics (SH551)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Define harmonic function of complex variable. Show that $u(x, y) = y^3 3x^2y$ is harmonic [1+4]and find corresponding analytic function. Define conformal mapping for function of complex variable. Show that function of complex variable w = iz is transformed through an angle $\frac{\pi}{2}$ in w-plane. [1+4] [5] 3. State and prove Cauchy's integral theorem. 4. Define Laurent's Series for the function of complex variable. Find Laurent's series of the function $f(z) = \frac{z}{(z+2)(z+3)}$ in the region 2 < |z| < 3. [1+4] 5. Define pole of order m for function of complex variable. Find residues of $f(z) = \frac{-z^2 - 2z}{(z+1)^2(z^2+1)}$ at its poles. [1+4]6. Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$ by contour integration in the complex plane. [5] [3+2]7. Find the Z-transform of: i) $t^2 e^{at}$ ii) e^{-at} cos wt [2.5+2.5] 8. Find the inverse Z-transform of: i) $X(z) = \frac{2z^2 - 5z}{(z-2)(z-3)}$ (By partial fraction method) ii) $X(z) = \frac{z^{-2}}{(1-z^{-1})^3}$ (By inversion integral method) 9. State final value theorem for Z-transform. Obtain Z-transform of $(1 - e^{-at})$; a>0 and hence [1+4] evaluate $x(\infty)$ by using final value theorem. [5] 10. Solve the difference equation: x(k+2) - 3x(k+1) + 2x(k) = 0; given that x(0) = 0 and x(1) = 1 by using z-transform method. [5] 11. Find the Fourier integral of the function:
 - $f(x) = \begin{cases} 1, & \text{for } 0 < x < \pi \\ 0, & \text{for } x > \pi \end{cases}$

- 12. Find the Fourier transform of e^{-x^2} . Also verify the convolution theorem for $f(x) = e^{-x^2}$ and $g(x) = e^{-x^2}$ [5]
- 13. Derive one dimensional wave equation and solve it completely. [10]

14. Solve completely the Laplace equation
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 under the conditions: [10]

$$u(0,y) = u(1,y) = u(x,o) = 0, u(x,\infty) = sin\left(\frac{n\pi x}{l}\right)$$

14	TRIBHUVAN UNIVERSITY
INS	TITUTE OF ENGINEERING
Exam	ination Control Division

Exam.		Back	
Level	BE	Full Marks	80
Programme	BGE, BEL, BEX, BCT	Pass Marks	32
Year / Part	П/П	Time	3 hrs.

2075 Baisakh

Subject: -	- Applied	Mathematics	(SH551)	1
------------	-----------	-------------	---------	---

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All questions</u>.
- The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- 1. a) Define harmonic function. Is V = arg(z) is harmonic? If yes, find a corresponding harmonic conjugate. [1+1+3]
 - b) Define conformal mapping. Find the bilinear transformation which maps the points $z = 0, 1, \infty$ into the points w = -3, -1, 1 respectively. [1+4]

2. a) Distinguish between Cauchy integral Theorem and Cauchy integral formula. Using

Cauchy integral formula evaluate
$$\int_{c} \frac{e^{-z}}{(z+1)(z-2)} dz$$
 where C is the circle $|z-1|=3$. [1+4]

b) State and Prove Taylor's series for function of complex variable.

3. a) Define an isolated pole. Using Cauchy's residue theorem evaluate $\int_{c} \frac{z-1}{(z+1)^2(z-2)} dz$ where C is the circle |z-i|=2.

$$\int_{-\infty}^{\infty} \frac{x^2}{(1+x^2)(x^2+4)} dx$$

- 4. a) Obtain the z-transform of (1-e^{-at}), a > 0 and hence evaluate x(∞) by using final value theorem. [2+3]
 - b) Obtain the inverse z-transform of:

$$X(z) = \frac{2z^3 + z}{(z-2)^2(z-1)}$$
 by using partial fraction method. [5]

5. a) Define z-transform of function f(t). Find the z-transform of following sequences: [1+2+2]

- (i) $f(k) = \begin{cases} 15,10,7,4,1,-1,3,6 \\ \uparrow \end{cases}$ (ii) $f(k) = \begin{cases} 5^{k} ; k < 0 \\ 2^{k} ; k \ge 0 \end{cases}$
- b) Solve the difference equation by the application of z-transform: x(k+2)+3x(k+1)+2x(k)=0 with conditions x(0) = 0, x(1) = 1.

[5]

[5]

[5]

- 6. a) A tightly stretched string with fixed ends at x = 0 and x = 1 is initially at rest in its equilibrium position. Find the deflection u(x, t) if it is set vibrating by giving to each of its points a velocity $3(lx-x^2)$.
 - b) Derive two dimensional heat equation.
- 7. a) Obtain the Fourier sine integral representation of $e^{-x}\cos x$ and hence show that $\int_{0}^{\infty} \frac{\omega^{3} \sin \omega x}{\omega^{4} + 4} d\omega = \frac{\pi}{2} e^{-x} \cos x, \quad x > 0.$
 - b) Find the Fourier Cosine transform of $f(x) = e^{-x}$, x > 0 and hence by Parseval's identity, show that

$$\int_0^\infty \frac{1}{(1+x^2)^2} dx = \frac{\pi}{4} \; .$$

[5]

[10]

[10]

Exam.	Regular				
Level	BE	Full Marks	80		
Programme	BGE, BEL, BEX, BCT	Pass Marks	32		
Year / Part	II / II	Time	3 hrs.		

2074 Bhadra

Subject: - Applied Mathematics (SH551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- a) Define an analytic function for a function of complex variable. Derive Cauchy Riemann equations in Cartesian form. [1+4]
 b) Define linear fractional mapping. Find bilinear mapping which maps the points z = 0, 1, -1 to w = i, 2, 4. [1+4]
 a) State and Prove Cauchy integral theorem. [5]
 b) Point out difference between Taylor's series and Laurent's series. Find Laurent' series [5]

of function
$$f(z) = \frac{\sin z}{z^6}$$
, $0 < |z| < TR$ [1+4]

- 3. a) Define pole of order m. Using Cauchy's residue theorem evaluate $\int \cot z \, dz$; where C is |z| = 1. [1+4]
 - b) Using Counter integration evaluate,

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{\left(1+x^2\right)^2} \,. \tag{5}$$

4. a) Find the z-transform of:

(i) cosat (ii) te^{-at} [2+3]

b) State final value theorem. If x(t) = 0 for t < 0 and Z[x(t)] = X(z) for $t \ge 0$ then prove that:

$$Z[\mathbf{x}(\mathbf{t}+\mathbf{n}\mathbf{T})] = \mathbf{z}^{\mathbf{n}} \left[\mathbf{X}(\mathbf{z}) - \sum_{k=0}^{\mathbf{n}-1} \mathbf{x}(\mathbf{k}\mathbf{T})\mathbf{z}^{k} \right].$$
[1+4]

5. a) Obtain inverse Z-transform of
$$\frac{z(3z^2 - 6z + 4)}{(z-1)^2(z-2)}$$
. [5]

- b) Solve the difference equation by the application of z-transform: x (k+2) -4x (k+1) + 4x(k) = 0; with conditions x(0) = 1; x(1) = 0. [5]
- 6. a) Derive one dimensional wave equation and solve it completely. [5+5]
 - b) A uniform rod of length ℓ has its end maintained at a temperature 0°C and the initial temperature of the rod is:

$$u(x,0) = 3\sin\frac{\pi x}{\ell} \quad \text{for } 0 < x < \ell \,.$$

Find the temperature u(x, t).

7. a) Find Fourier integral of the function

$$f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$$

b) Verify the convolution theorem for Fourier transform for the functions

[10]

[5]

2073 Bhadra

Exam.	Regular			
Level	BE	Full Marks	80	
Programme	BEL, BEX, BCT, BGE	Pass Marks	32	
Year / Part	II / II	Time	3 hrs.	

[5]

[1+1+1.5+1.5]

[5]

Subject: - Applied Mathematics (SH551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.

1. a) Define harmonic function of complex variable. Determine the analytical function

$$f(z) = u + iv \text{ if } u = y^3 - 3x^2y$$
 [1+4]

- b) Derive Cauchy-Reimann equations if function of complex variable f(z) = u + iv is analytic in cartesian form.
 [5]
- a) What do you mean by conformal mapping? Find the linear transformation which maps points z₁ = 1, z₂ = i, z₃ = -1 into the points w₁ = 0, w₂ = 1, w₃ = ∞. [1+4]
 - b) State and prove Cauchy's integral formula.
- 3. a) State Taylor's theorem. Find the Laurent's series representation of the function

$$f(z) = \frac{z}{(z+1)(z+2)}$$
 in the annular region between $|z| = 1$ and $|z| = 2$. [1+4]

b) Define zero of order m of function of complex variable .Determine the poles and residue at poles of the functions $f(z) = \frac{1+z}{(z+2)(1-z)^2}$. [1+4]

OR

Evaluate the real integral $\int_{-\infty}^{\infty} \frac{x^2}{(1+x^2)^3} dx$ by contour integration in the complex plane. [5]

4. a) Define z-transform. How does it differ from Fourier transform? Obtain z-transform of

- (i) $t^2 a^t$ (ii) cosat
- b) State initial value theorem for z transform. Find the initial value x(0) and x(1) for the function.
 [1+4]

$$X(z) = \frac{(1 - e^{T})z^{-1}}{(1 - z^{-1})(1 - e^{-T}z^{-1})}$$

- 5. a) Obtain the inverse z-transform of $X(z) = \frac{3z^3 + 2z}{(z-3)^2(z-2)}$ by using inversion integral method.
 - b) Apply method of z-transform to solve the difference equation [5] $x(k+2)^{\frac{1}{2}}-4x(k+1)+4x(k)=0; x(0)=0, x(1)=1$

6. Solve completely one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the conditions: [10]

$$u(0,t) = 0, u(l,t) = 0, u(x,0) = 0 \text{ and } \left(\frac{\partial u}{\partial t}\right)_{at t=0} = 3(lx - x^2)$$

7. Derive one dimensional heat equation and solve it completely. [10]

- 8. a) State convolution theorem for Fourier transform. Give its importance with suitable [2+3]
 - b) Find the Fourier cosine integral of the function $f(x) = e^{-kx} (x > 0, k > 0)$ and hence show that $\int_0^\infty \frac{\cos \omega x d\omega}{k^2 + \omega^2} = \frac{\pi}{2k} e^{-kx}; x > 0, k > 0$ [5]

15 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2072 Ashwin

Exam.	Regular			
Level	BE	Full Marks	80	
Programme	BEL, BEX, BCT, BGE	Pass Marks	32	
Year / Part	II / II	Time	3 hrs.	

[5]

[5]

[5]

[10]

[10]

[5]

Subject: - Applied Mathematics (SH551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- The figures in the margin indicate <u>Full Marks</u>.
- Assume suitable data if necessary.
- 1. a) If $u = (x-1)^3 3xy^2 + 3y^2$, determine V so that u + iv is an analytic function of x+iy. [5]
 - b) Define an analytic function. Express Cauchy Riemann equations $u_x = v_y$ and $u_y = -v_x$ in polar from.
- 2. a) Find the bilinear transformation which maps points z₁ = 1, z₂ = i, z₃ = -1 into the points w₁ = i, w₂ = -1, w₃ = -i respectively. [5]
 - b) Evaluate $\int_{0}^{1+i} (x^2 + iy) dz$ along the path $y = x^2$ [5]

3. a) Express
$$f(z) = \frac{1}{(z^2 - 3z + 2)}$$
 as Laurent's series in the region $1 < |z| < 2$. [5]

b) Evalute
$$\int_{0}^{2\pi} \frac{1}{5-4\sin\theta} d\theta$$
 by contour integration method in complex plane. [5]

- 4. a) Find z-transform of:
 - i) te^{-at}
 - ii) sinat
 - b) State and prove final value theorem for z- transform.

5. a) Find the inverse z-transform of $\frac{2z^2 - 5z}{(z-2)(z-3)}$ by using partial fraction method. [5]

- b) Solve difference equation $x(k+2)-3x(k+1)+2x(k) = 4^k$ for x(0) = 0 and x(1) = 1. [5]
- 6. Derive one dimensional wave equation and obtain its solution.
- 7. Solve one dimensional heat equation:

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 under the conditions:

i) u is not infinite as $t \rightarrow \infty$

- *ii)* $\frac{\partial u}{\partial x} = 0$ for x = 0 and x = l
- iii) $u(x,0) = lx x^2$ for t = 0; between x = 0 and x = l

8. a) Find Fourier integral representation of $f(x) = e^{-x}, x > 0$ and hence evaluate $\int_{0}^{\infty} \frac{\cos(sx)}{s^{2} + 1} ds$ [5]

b) Find the Fourier cosine transform of $f(x) = e^{-|x|}$ and hence, by Parseval's identity, shown that $\int_0^{\infty} \frac{1}{(1+x^2)^2} dx = \frac{\pi}{4}$

*** 9

2071 Bhadra

Exam.	Regular / Back				
Level	BE Full Marks 80				
Programme	BEL, BEX, BCT, BGE	Pass Marks	32		
Year / Part	II / II Time 3 hrs.				

Subject: - Applied Mathematics (SH551)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. Determine the analytic function f(z) = u + iv if $u = \log \sqrt{x^2 + y^2}$.
- 2. State and prove Cauchy's integral formula.
- 3. Find the Taylor's series of $f(z) = \frac{1}{1-z}$ about z = 3i.
- 4. Evaluate the integral: $\oint_C \frac{z^2 dz}{(z+1)(z+3)}$ where C: |z| = 4, using residue theorem.
- 5. Define conformal mapping, show that $w = \frac{az+b}{cz+d}$ is invariant to

$$\left(\frac{\mathbf{w}-\mathbf{w}_1}{\mathbf{w}-\mathbf{w}_3}\right) \times \left(\frac{\mathbf{w}_2-\mathbf{w}_3}{\mathbf{w}_2-\mathbf{w}_1}\right) = \left(\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{z}-\mathbf{z}_3}\right) \times \left(\frac{\mathbf{z}_2-\mathbf{z}_3}{\mathbf{z}_2-\mathbf{z}_1}\right)$$

6. Using contour integration, evaluate real integral:

$$\int_{-\infty}^{+\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$$

7. Find the z-transform of $x(z) = \cosh t \sinh t$.

8. State and prove "final value theorem" for the z-transform.

- 9. Find the inverse z-transform of $x(z) = \frac{z}{z^2 + 7z + 10}$.
- 10. Using z-transform solve the difference equation:

$$x(K+2) + 6x(K+1) + 9x(K) = 2^{K}; x_0 = x_1 = 0.$$

- 11. Derive one-dimensional heat equation.
- 12. Solve the wave equation for a tightly stretched string of length 'l' fixed at both ends if the initial deflection in $y(x, 0) = |x x^2|$ and the initial velocity is zero.

13. Solve
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{2y^2} = 0$$
 under the conditions $u(0, y) = u(1, y) = u(x, 0) = 0$, $u(x, a) = \sin\left(\frac{n\pi x}{1}\right)$

- 14. Derive the wave equation (vibrating of a string).
- 15. Find the Fourier cosine transform of $f(x) = e^{-|m|x}$ and hence show that $\int_{0}^{\infty} \frac{\cos p\gamma}{\gamma^2 + \beta^2} d\gamma = \frac{\pi}{2\beta} e^{-p\beta}$.

16. Find the Fourier integral representation of the function $f(x) = e^{-x}$, $x \ge 0$ with f(-x) = f(x). Hence evaluate $\int_{0}^{\infty} \frac{\cos(sx)}{s^{2}+1} ds$.

|13 N

12 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2071 Magh

Exam.	New Back (2066 & Later Batch)			
Level	BE	Full Marks	80	
Programme	BEL, BEX, BCT, BGE	Pass Marks	32	
Year / Part	II / II	Time	3 hrs.	

Subject: - Applied Mathematics (SH551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.

ANG STORAGE

- ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.

1. a) Determine the analytic function
$$f(z) = u + iv$$
 if $u = 3x^2y - y^3$. [5]

b) Find the linear transformation which maps the points $z = 0, 1, \infty$ into the points w = -3, -1, 1 respectively. Find also fixed points of the transformation. [5]

2. a) State and prove Cauchy's integral formula.

b) Evaluate
$$\int_{C} \frac{e^{2z}}{(z-1)(z-2)} dz$$
 where C is the circle $|z| = 3$. [5]

3. a) Find the first four terms of the Taylor's series expansion of the complex function
$$f(z) = \frac{z+1}{(z-3)(z-4)}$$
 about the centre z = 2. [5]

b) Evaluate
$$\int_{C} \frac{4-3z}{z(z-1)(z-2)} dz$$
 where C is the circle $|z| = \frac{3}{2}$. [5]

OR

Evaluate $\int_0^{2\pi} \frac{1}{\cos \theta + 2} d\theta$ by contour integration in the complex plane.

4. Derive one dimensional heat equation $u_t = c^2 u_{xx}$ and solve it completely. [10]

- 5. Find all possible solution of Laplace equation $u_{xx} + u_{yy} = 0$. Using this, hence solve $u_{xx} + u_{yy} = 0$, under the conditions u(0, y) = 0, u(x, y) = 0 when $y \to \infty$ and $u(x, 0) = \sin x$. [10]
- 6. a) Find the z-transform of sin K θ . Use it to find the $z[a^{K} \sin K\theta]$. [5]

b) If
$$z[x(K)] = \frac{2z^2 + 3z + 12}{(z-1)^4}$$
, find the value of x(2) and x(3). [5]

7. a) Find the inverse z-transform of $x(z) = \frac{3z^3 + 2z}{(z-3)^2(z-2)}$ by using inversion integral method.

b) Using z-transform solve the difference equation $x(K + 2) - 4x(K + 1) + 4x(K) = 2^{K}$ given that x(0) = 0, x(1) = 1. [5]

[5]

[5]

8. a) Find the Fourier sine integral of the function $f(x) = e^{-Kx}$ and hence show that $\int_{0}^{\infty} \lambda \sin \lambda x$ $\pi = \frac{\pi}{K} x$

$$\int_{0}^{\Lambda} \frac{\lambda \sin \lambda x}{\lambda^{2} + \beta^{2}} d\lambda = \frac{\pi}{2} e^{-Kx}, \quad x > 0, K > 0$$

b) Find the Fourier sine transform of
$$e^{-x}$$
, $x \ge 0$ and hence show that [5]

$$\int_{-\infty}^{\infty} \frac{x \sin mx}{x^2 + 1} dx = \frac{\pi}{2} e^{-m}, m \ge 0$$

25 TRIBHUVAN UNIVERSITY	Exam.		Regular	
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	BEL, BEX, BCT	Pass Marks	32
2070 Bhadra	Year / Part	II / II	Time	3 hrs.

Subject: - Applied Mathematics (SH551)

 \checkmark Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt All questions.

✓ The figures in the margin indicate <u>Full Marks</u>.

✓ Assume suitable data if necessary.

27

- Show that u(x, y) = x² + 2xy y² is a harmonic function and determine v(x, y) in such a way that f(z) = u(x, y) + iv(x, y) is analytic.
- 2. Define complex integral. State and prove Cauchy integral formula.

OR

[5]

[5]

[5]

Obtain bilinear transformation which maps -i, o, i to -1, i, 1.

3. Evaluate
$$\int_C \frac{e^{zz}}{(z-1)(z-2)} dz$$
 where C is $|z| = 3$ using Cauchy's integral formula. [5]

4. Obtain the Laurent series which represents the function $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ 2 < |z| < 3. [5]

5. Find the Laurent series of
$$f(z) = \frac{1}{4+z^2}$$
 about the point $z = i$. [5]

- 6. State and prove Taylor series of a function f(z).
- 7. Derive one dimensional wave equation $u_{tt} = c^2 u_{xx}$ and solve it completely. [10]
- 8. Solve one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the boundary condition $\frac{\partial u}{\partial x} = 0$ when x = 0 and x = L and initial condition u(x, 0) = x for 0 < x < L. [10]

9. Find Z transform of (a)
$$te^{-at}$$
 and (b) sin at. [5]

10. Find the inverse z-transform (a)
$$\frac{z-4}{(z-1)(z-2)^2}$$
 (b) $\frac{z}{z^2-3z+2}$. [5]

- 11. Obtain the Z transform of $x(t) = (1 e^{-at})$, a > 0 and hence evaluate $x(\infty)$ by using final value theorem. [5]
- 12. Solve using z-transform the difference equation x(K + 2) + 2x(K + 1) + 3x(K) = 0. [5]
- 13. Find the Fourier sine transform of $f(x) = e^{-x}$, $x \ge 0$ and hence evaluate $\int_0^\infty \frac{x \sin x}{(1+x^2)} dx$. [5]
- 14. State and prove convolution theorem of Fourier transform.

[5]

25 TRIBHUVAN UNIVERSITY Exam. New Back (2066 & Later Batch) INSTITUTE OF ENGINEERING Level BE Full Marks BEL, BEX, Examination Control Division Programme **Pass Marks** BCT

Year / Part 2070 Magh II / II Time 3 hrs. Subject: - Applied Mathematics (SH551) \checkmark Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. 1. Define analytic function. Show that the function $f(z) = \frac{1}{z^4}$ is analytic except z = 0[5] 2. Define complex integral. Evaluate $\int_{c} \log z \, dz; c: |z| = 1$ [5] Obtain a bilinear transformation which maps -i, 0, i to -1, i, 1. 3. Evaluate $\int_0^{1+i} (x^2 + iy) dz$ along the path y = x. [5] 4. Find the Taylor series of $f(z) = \frac{1}{4+z^2}$ about the point z = i. [5]

- 5. Evaluate the integrals by residue theorem $\int_{c} \frac{1-\cos z}{z^{3}} dz$
- 6. State Cauchy's Residue theorem and use it to evaluate $\int_{c} \frac{z^2}{3+4z+z^2} dz$ where C is |z|=2[5]

OR Evaluate $\int_{0}^{2\pi} \frac{d\theta}{\cos \theta + 2}$ by contour integration in complex plane.

- 7. Derive the one dimensional wave equation.
- 8. A rod of length L has its ends A and B maintained at 0° and 100° respectively until steady state prevails. If the changes are made by reducing the temperature of end B to 85° and increasing that of end A to 15°, then find the temperature distribution in the rod at a time t.
- 9. Find the z-transform of (i) e^{-at} sinwt (ii) cos at

10. Obtain inverse Z-transform of (i)
$$\frac{z+2}{(z-2)(z-3)}$$
, (ii) $\frac{z}{(z-2)(z-1)}$ [5]

11. If x(k) = 0 for k < 0 and $Z\{x(k)\} = X(z)$ for k > 0 then prove that $Z\{x(k+n)\} = z^n X(z) - z^n$ $\sum_{k=0}^{n-1} \chi(k) z^{-k}$ where n = 0, 1, 2.... [5]

12. Solve the difference equation x (k+2) - 4x(k+1) + 4x(k) = 0 with conditions, x(0) = 0, x(1) = 1

13. Find the cosine transform of $f(x) = e^{-mx} m > 0$ show that $\int_0^\infty \frac{\cos pr}{r^2 + B^2} = \frac{\Pi}{2B} e^{-PB}$ [5]

14. Find the Fourier transform of
$$g(x) = \begin{cases} 1 - x^2 \\ 0, \end{cases}$$
 if $-1 < x < 1;$ [5]

if otherwise. and hence use it to evaluate $\int_0^\infty \left(\frac{x\cos x - \sin x}{x^3}\right)\cos(x/2)dx$ ***

[10]

[5]

80

32

[5]

[5]

[10]

25 TRIBHUVAN UNIVERSITY	Exam.	Regular (20	66 & Later B	atch)
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	BEL, BEX, BCT	Pass Marks	32
2069 Bhadra	Year / Part	II / II	Time	3 hrs.

Subject: - Applied Mathematics (SH551)

Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt <u>All</u> questions.

 \checkmark <u>All</u> questions carry equal marks.

✓ Assume suitable data if necessary.

1. Determine the analytic function f(z) = u(x,y) + iv(x,y) if $u(x,y) = x^2 - y^2$.

2. Define complex integral. Evaluate: $\oint_C (z+1)dz$ where C is the square with vertices at z = c

0, z = 1, z = 1+i and z = i.

OR

Find linear fractional transformation mapping of: $-2 \mapsto \infty, 0 \mapsto \frac{1}{2}, 2 \mapsto \frac{3}{4}$.

3. a) State Cauchy's integral formula and evaluate the integral $\oint \frac{4-3z}{z(z-1)(z-2)} dz$, where C is circle $|z| = \frac{3}{2}$.

b) Obtain the Laurent series which represents the function $f(z) = \frac{1}{(1+z^2)(z+2)}$ when $|\langle |z| < 2$.

4. a) Find the Taylor's series expansion of $f(z) = \frac{1}{z^2 + 4}$ about the point z = i.

b) Evaluate $\int \tan z \, dz$ where C is a circle |z| = 2 by Cauchy's residue theorem.

OR

Evaluate $\int_0^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta$ by contour integration in the complex plane.

5. Find the z-transforms of: (i) $\cos h(at) \sin (bt)$ (ii) n.(n-1); n = k

6. Find the inverse z-transforms of: (i) $\frac{Z}{Z^2 - 3Z + 2}$ (ii) $\frac{Z}{(Z+1)^2(Z-1)}$.

7. a) State and prove convolution theorem for z-transform.

b) Solve by using z-transform the difference equation x(k+2) + 2x(k+1) + 3x(k) = 0, given that x(0) = 0 and x(1) = 2

- 8. Solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ given that u = 0 as $t \to \infty$ as well as u = 0 at x = 0 and x = l.
- 9. Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, which satisfies the condition u(0,y) = u(L,y) = u(x,0) = 0 and $u(x,a) = \sin\left(\frac{n\pi x}{L}\right)$.

OR

The diameter of a semi-circular plate of radius a is kept at 0°C and the temperature at the semi-circular boundary is u_0 Find the steady state temperature in the plate.

10. Find the Fourier integral representation of the function $f(x) = e^{-x}$, $x \ge 0$ with f(-x) = f(x).

2

Hence evaluate
$$\int_{0}^{\infty} \frac{\cos(sx)}{s^2 + 1} ds$$
.

- 11. Find the Fourier transform of: $f(x) = 1-x^2$, |x| < 1
 - = 0, $|\mathbf{x}| > 1$ and hence evaluate

$$\int_{0}^{\infty} \left(\frac{x \cos x - \sin x}{x^3} \right) \cos \frac{x}{2} dx.$$

		Pa			,	
25 TRIBHUV	AN UNIVERSITY	Exam.		Regular		
INSTITUTE OF		Level	BEL BEX	Full Marks	80	
Examination	ontrol Division	Programme.	BCT	Pass Marks	32	
2068 1	Bhadra	Year / Part	П/П	Time	3 hrs.	
	Subiect: - A	pplied Mather	natics			
. Condidatas ara r	aquirad to give their or		da oo fo		rang na tao ming na Kaoming na K	
✓ Attempt All ques	equited to give their a	iswers in their ov	vn words as fa	r as practicable	•	
✓ <u>All</u> questions can	rry equal marks.					
✓ Assume suitable	data if necessary.					
1			1 () (1		<i>.</i> •	
$f(z) = \log z$ i	ary conditions for a f	unction $f(z)$ to be	e analytic. Sho	ow that the fun	iction	
h) Find the line	ar fractional transform	ation that man	the noints 7 -	$-i$ $z_{e} = 0$ and	$7_{2} = i$	
into points w	$w_1 = -1, w_2 = i, w_3 = 1$	respectively.	the points $z_1 -$	-1, 22 - 0 and	23 - 1	
$2 \sim a$) State and pro	ove Cauchy's integral	formula				
b) Write the st	atement of Cauchy's	integral formul	a lice it to e	valuate the int	teoral	
e^{z}	atoment of Cauchy s			valuate the m	iograf	
$d\frac{z}{(z-1)(z-1)}$	dz where C is the ci	rcle $ z = 2$.				
3 a) Write the st	atement of Taylor's	theorem Find th	o Touront cor	ion for the fur	oction	
3. a) while the st	atement of Taylor S	meorem. rind u	ie Laureni sen			
$f(z) = \frac{1}{z^2 - 3z}$	$\frac{1}{z+2}$ in the region $1 < \frac{1}{z+2}$	z < 2.				
		<u>م</u>	inz,	<u> </u>	. •	
b) State Cauchy	-residue theorem. Usi	ng it evaluate g-	$\frac{1}{z^6}$ dz where	C: z = 1.		
		OR	•			
				ar a constant	THE REPORT OF	
2π.	A TA CALL MARK			•		
Evaluate $\int_{-2\pi}^{2\pi}$	$\frac{d\theta}{d\theta}$ d θ by contour	integration in the	e complex plan	C.		
Evaluate $\int_{0}^{2\pi} \frac{2\pi}{2}$	$\frac{d\theta}{d\theta}$ d θ by contour $+\cos\theta$	integration in the	complex plan	с.		
Evaluate $\int_{0}^{2\pi} \frac{1}{2}$ 4. a) Show that t	$\frac{d\theta}{d\theta} = d\theta \text{ by contour}$ + cos θ he Z-transform of co	integration in the os k θ is $\frac{z(z-z)}{z}$	$\frac{1}{\cos\theta}$. Use	e. e this result to	o find	
Evaluate $\int_{0}^{2\pi} \frac{1}{2}$ 4. a) Show that t	$\frac{d\theta}{d\theta}$ d θ by contour + cos θ he Z-transform of co	integration in the os k θ is $\frac{z(z-z)}{z^2-2z}$	$\frac{\cos\theta}{\cos\theta+1}$. Use	e.	find	
Evaluate $\int_{0}^{2\pi} \frac{1}{2}$ 4. a) Show that t Z-transform	$\frac{d\theta}{d\theta} = d\theta \text{ by contour}$ + cos θ he Z-transform of co of $a^k \cos k\theta$.	integration in the os k θ is $\frac{z(z-z)}{z^2-2z}$	$\frac{\cos\theta}{\cos\theta+1}$. Use	e. e this result to	o find	
Evaluate $\int_{0}^{2\pi} \frac{1}{2}$ 4. a) Show that t Z-transform b) Obtain the ir	$\frac{d\theta}{d\theta} = d\theta \text{ by contour}$ + cos θ he Z-transform of co of $a^k \cos k\theta$.	integration in the ps k θ is $\frac{z(z-z)}{z^2-2z}$ $\frac{2z^3+z}{z^2-2z}$	$\frac{\cos\theta}{\cos\theta+1}$. Use $\sin \theta$ partial fra	e this result to action method.`	o find	
Evaluate $\int_{0}^{2\pi} \frac{1}{2}$ 4. a) Show that t Z-transform b) Obtain the in	$\frac{d\theta}{d\theta} = d\theta \text{ by contour}$ $\frac{d\theta}{d\theta} = d\theta \text{ by contour}$ he Z-transform of co of a ^k cos k θ . averse Z-transform of	integration in the ps k θ is $\frac{z(z-z)^2}{z^2-2z}$ $\frac{2z^3+z}{(z-2)^2(z-1)}$, u	$\frac{\cos\theta}{\cos\theta+1}$. Use $\sin \theta$ partial fra	e. this result to action method.`) find	
Evaluate $\int_{0}^{2\pi} \frac{1}{2}$ 4. a) Show that t Z-transform b) Obtain the in 5. a) Solve the difference	$\frac{d\theta}{d\theta} = d\theta \text{ by contour}$	integration in the ps k θ is $\frac{z(z-z)}{z^2-2z}$ $\frac{2z^3+z}{(z-2)^2(z-1)}$, w +2) - x(k+1)	$\frac{\cos \theta}{\cos \theta + 1}$. Use $\sin \theta$ partial fra + 0.25x(k) =	e. e this result to action method.` u(k) where x((() find $(0) = 1$	
Evaluate $\int_{0}^{2\pi} \frac{1}{2}$ 4. a) Show that t Z-transform b) Obtain the in 5. a) Solve the dia and $x(1) = 2$	$\frac{d\theta}{d\theta} = d\theta \text{ by contour}$ he Z-transform of co of a ^k cos k θ . averse Z-transform of fference equation x(k and u(k) is unit step fi	integration in the ps k θ is $\frac{z(z-z)}{z^2-2z}$ $\frac{2z^3+z}{(z-2)^2(z-1)}$, where $z = -2z^3$ $+2z^3+z$	$\frac{\cos\theta}{\cos\theta+1}$. Use sing partial fra + 0.25x(k) =	e. e this result to action method.` u(k) where x(0	find)) = 1	· •
Evaluate $\int_{0}^{2\pi} \frac{1}{2}$ 4. a) Show that t Z-transform b) Obtain the in 5. a) Solve the dia and $x(1) = 2$ b) State and pro-	$d\theta$ d θ by contour + cos θ he Z-transform of co of a ^k cos k θ . werse Z-transform of fference equation x(k and u(k) is unit step for	integration in the os k θ is $\frac{z(z-z)^2}{z^2-2z}$ $\frac{2z^3+z}{(z-2)^2(z-1)}$, u +2) - x(k+1) unction. f z-transform.	$\frac{\cos \theta}{\cos \theta + 1}$. Use $\sin \theta = 1$ $\sin \theta = 1$ $\sin \theta = 1$ $\sin \theta = 1$ \sin	e. e this result to action method.` u(k) where x((find)) = 1 	X
Evaluate $\int_{0}^{2\pi} \frac{1}{2}$ 4. a) Show that t Z-transform b) Obtain the in 5. a) Solve the dia and $x(1) = 2$ b) State and pro 6. Derive one-dime	$d\theta$ d θ by contour + cos θ he Z-transform of co of a ^k cos k θ . werse Z-transform of fference equation x(k and u(k) is unit step for ove shifting theorem o	integration in the ps k θ is $\frac{z(z-z)}{z^2-2z}$ $\frac{2z^3+z}{(z-2)^2(z-1)}$, where $z = -2z^3$ +2) - x(k+1) unction. f z-transform. In governing transform.	$\frac{\cos \theta}{\cos \theta + 1}$. Use $\sin \theta = 1$ Use $\sin \theta = 1$ Use $\sin \theta = 1$ Use $\sin \theta =$	e. this result to ction method.` u(k) where x((n of string and	 find)) = 1 solve 	
Evaluate $\int_{0}^{2\pi} \frac{1}{2}$ 4. a) Show that t Z-transform b) Obtain the in 5. a) Solve the dia and $x(1) = 2$ b) State and pro- it completely.	$\frac{d\theta}{d\theta}$ d θ by contour the Z-transform of co of a ^k cos k θ . werse Z-transform of fference equation x(k and u(k) is unit step for ove shifting theorem o ensional wave equation	integration in the os k θ is $\frac{z(z-z)^2}{z^2-2z}$ $\frac{2z^3+z}{(z-2)^2(z-1)}$, u +2) - x(k+1) unction. f z-transform. n governing transform	$\frac{\cos \theta}{\cos \theta + 1}$. Use $\sin \theta + 1$. Use $\sin \theta + 1$ = $0.25x(k) =$	e. e this result to action method.` u(k) where x(() n of string and) find)) = 1 solve 	
 Evaluate ∫₀^{2π}/₂ 4. a) Show that t Z-transform b) Obtain the in 5. a) Solve the dia and x(1) = 2 b) State and prof. 6. Derive one-dimensit completely. 	$\frac{d\theta}{d\theta}$ d θ by contour $\frac{d\theta}{d\theta}$ by contour he Z-transform of co of $a^k \cos k\theta$. werse Z-transform of fference equation x(k and u(k) is unit step for ove shifting theorem o ensional wave equation	integration in the os k θ is $\frac{z(z-z)}{z^2-2z}$ $\frac{2z^3+z}{(z-2)^2(z-1)}$, u +2) - x(k+1) unction. f z-transform. n governing transform.	$\frac{\cos\theta}{\cos\theta+1}$. Use $\sin\theta$ sing partial fra + 0.25x(k) = sverse vibration	e. e this result to action method.` u(k) where x((n of string and	 find)) = 1 solve 	· · · · · · · · · · · · · · · · · · ·

- 7. Solve the one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the conditions:
 - a) u is not infinite as $t \rightarrow \infty$
 - b) $\frac{\partial u}{\partial x} = 0$ for x = 0 and x = l and
 - c) $u(x,0) = lx x^2$ for t = 0 between x = 0 and x = l

OR

The diameter of a semi circular plate of radius a is kept at 0°C and temperature at the semi circular boundary is T°C. Show that the steady temperature in the plate is given

by u(r,
$$\theta$$
) $\frac{4T}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \left(\frac{r}{a}\right)^{2n-1} \sin(2n-1)\theta$

8 a) Find the Fourier cosine integral representation of the function $f(x) = e^{-kx}$ (x > 0, k > 0) and hence show that

$$\int_{0}^{\infty} \frac{\cos \omega x}{k^{2} + \omega^{2}} d\omega = \frac{\pi}{2k} e^{-kx} \quad (x > 0, K > 0)$$

b) Obtain Fourier sine transform of e^{-x} , (x > 0) and hence evaluate $\int_{0}^{\infty} \frac{x^2}{(1 + x^2)^2} dx$.

Exam.	Regular / Back			
Level	BE	Full Marks	80	
Programme	BEL, BEX, BCT	Pass Marks	32	
Year / Part	П/П	Time	3 hrs.	

2067 Mangsir

Subject: - Applied Mathematics

✓ Candidates are required to give their answers in their own words as far as practicable.

Attempt any <u>Six</u> questions.

✓ <u>All</u> questions carry equal marks.

Assume suitable data if necessary.

- 1. a) State Cauchy Riemann equations in polar form. Show that $f(z) = \sin z$ is analytic in the entire z-plane.
 - b) State and prove Cauchy's integral formula.
- 2. a) State Laurent series. Find Taylor series of $f(z) = \cos z$ about $z = \frac{\pi}{4}$.

b) Define pole of order m. Find the residue of $f(z) = \frac{Z^2 e^z}{(Z-2)^3}$ at its pole.

3. a) Determine the Z-transform of

, i) t²e^{-at}

- ii) e^{-at} coswt
- b) State initial value theorem for Z-transform. If Z-transform of a function is given by

$$X(z) = \frac{(1 - e^{-t})z^{-1}}{(1 - z^{-1})(1 - e^{-t}z^{-1})}, \text{ determine } x(0), x(1) \text{ and } x(2).$$

- 4. a) Find inverse Z- transform of
 - i) $x(z) = \frac{z+2}{z^2 5z + 6}$ (by partial fraction method)
 - ii) $x(z) = \frac{z+2}{z^2 + 7z + 10}$ (by inversion integral method)
 - b) Solve the difference equation: x(k+2) 4x(k+1) + 4x(k) = 0 Where x(o) = 1 and x(1) = 0.
- 5. Derive one dimensional wave equation and obtain its solution.
- 6. Solve: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the conditions, $u(o,y) = u(\ell,y) = u(x,o) = 0$, and $u(x,a) = \sin\left(\frac{n\pi x}{\ell}\right)$.
- 7. Define convolution for Fourier transform. Verify convolution theorem for $f(x) = g(x) = e^{-x^2}$.
- 8. Maximize: $z = x_1 + 3x_2$ subject to

 $x_1 + 2x_2 \le 10, x_1 \le 5$, and $x_2 \le 4; x_1, x_2 \ge 0$

by using simplex method.