05 TRIBHUVAN UNIVERSITY	Exam.	一位 对他 也知道	Back	
INSTITUTE OF ENGINEERING	Level	BE ·	Full Marks	80
Examination Control Division	Programme	BCE, BME, BAME, BIE	Pass Marks	32
2075 Ashwin	Year / Part	III / I	Time	3 hrs.
	L			
Subject: - Num	nerical Method	ls <i>(SH603)</i>		Se interesting - Succeptures
Candidates are required to give their a	nswers in their o	wn words as fa	r as practicable	
Attempt <u>All questions</u> .				
The figures in the margin indicate <u>Ful</u> Assume suitable data if necessary.	<u>ll Marks</u> .			
Assume summer can i necessary.				
. Explain the importance of Numerical l	Methods in the fi	eld of Science	and Engineerin	g.
. Write a pseudo-code to find a real 1	root of a non-lin	ear equation	using False Po	sition
method.		•		
. Find a positive root of the equation	$x^2 \sin x - e^x + 2$	2=0 correct t	o 3 decimals	using
Bisection method.				
. Using L-U method solve, the following	g system of equa	tions		
2x + 3y + z = 1				
6x - 3y + 4z = 17				
5x + 7y + 6z = 10				
. Determine the dominant eigen value	and correspond	ing vector of t	he following n	natrix
using the power method:				
[2 6 3]				
2 6 3 6 5 4 3 4 9				
3 4 9				
Fit the following set of data to a curve	e of the form $y =$	ae ^{bx} .		
x 2 3	4 5 6	7		
y 15.1 10.	2 7.8 5.5 3.1	8 1.7		
. Using the Cubic Spline interpolation	n technique, esti	imate the valu	e of y(4) from	n the
following data:				
x 1	3 5	7		
		5.10		
. Derive an expression to evaluate firs			ckward interpo	lation
formula and evaluate $\frac{dy}{dx}$ at x = 8 from	m the following t	able.		[
x 0 2	4 6	8		
	11.2151 34.286			

....

1

in the

9. Use Simpson's $\frac{1}{3}$ - rule to evaluate $\int_{0}^{6} \frac{2x^2 + 5}{1 + x} dx$, taking n = 6 and also find the absolute 2 error with exact value. [3+1] 10. Write a pseudo-code to solve an initial value problem of first order differential equation using Runge-Kutta 2 method. [4] 11. Using Fourth-order Runge Kutta method, solve the following differential equation for y at x = 0.2 and r = 0.4; y'

$$y' - xy'^{2} + y^{2} = 0, \quad y(0) = 1, \quad y'(0) = 0$$
[8]

12. Solve Poisson's equation $Uxx + Uyy = 243(x^3 + y^3)$ over the square domain $0 \le x \le 1$, $0 \le y \le 1$ with step size $h = \frac{1}{3}$ with u = 100 on the boundary. [10]

05 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE, BME, BAME, BIE	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

2074 Chaitra

Subject: - Numerical Methods (SH603)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- Define error and write its different types with examples. If x = 1.350253 is rounded off to Four significant digits, find absolute and relative errors. [4]
- 2. Write an algorithm to find a real root of a non linear equation using secant method.
- 3. What are limitations of Newton-Raphson method? Using Newton-Raphson method, find a root of equation

xsinx + cosx = 0 which is near to $x = \pi$.

4. Solve the following system of linear equation using Gauss-Seidal method, correct to 3 decimal places.

$$2x_{1} + 6x_{3} - 3x_{4} = 31$$

$$6x_{1} + 2x_{4} = 14$$

$$-3x_{1} + 5x_{2} = 9$$

$$2x_{1} + x_{2} - 5x_{3} + 9x_{4} = -9$$

- Obtain the dominant eigen value and its corresponding eigen vector of following matrix using Power Method.
 [8]
 - $\begin{bmatrix} 1 & 4 & 4 \\ 4 & 1 & 8 \\ 4 & 8 & 1 \end{bmatrix}$
- 6. Fit the curve of the form $y = a \log_e x + b$ to the following data sets.

X	2	3	4.	5	6	7
у	5.45	6.26	6.84	7.29	7.66	7,96

7. Approximate y(2) and y(10) using appropriate interpolation formula from the following data:

X	3	4	5	6	7	8	9
у	4.8	8.4	14.5	23.6	36.2	52.8	73.9

- Berive Newton-Cotes general quadrature formula for integration and use it to obtain Simpson's -¹/₃ rule of integration. [6]
- 9. Evaluate $\int_{0}^{1} \frac{\tan^{-1} x}{x}$ using Gaussian 3 point formula. [4]

10. Solve the following boundary value problem using shooting method

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x$$
, with y(1) = 1 and y(2) = 5; Taking h = 0.25

- 11. Write a pseudo-code to solve an initial value problem of first order using Runge Kutta 4 method.
- 12. Derive recurrence formula for solving one dimensional heat equation $U_t = c^2 U_{xx}$. Using it solve the heat equation $U_t = 0.5 U_{xx}$, $0 \le x \le 5$, $0 \le t \le 4$ with boundary conditions

FA I AT

[4]

[10]

[8]

[8]

[8]

[6]

[2+4]

TRIBHUVAN UNIVERSITY 05 INSTITUTE OF ENGINEERING **Examination Control Division** 2074 Ashwin

Exam.		Back		
Level	BE	Full Marks	80	
Programme	BCE, BME, BIE	Pass Marks	32	
Year / Part	III / I	Time	3 hrs.	

Subject: - Numerical Methods (SH603)

- Candidates are required to give their answers in their own words as far as practicable. V
- ~ Attempt All questions.
- The figures in the margin indicate Full Marks. V
- ✓ Assume suitable data if necessary.
- 1. Discuss the significance of Numerical Methods in the field of science and engineering. [4]
- 2. Find a real root of the equation $\cos x xe^x = 0$, correct to four decimal places, using Regula-falsi method.
- 3. Write pseudo-code for finding a real root of a non-linear equation using the Secant Method. [6]
- 4. Solve the following system of linear equations using the Gauss-Elimination Method.

 $3x_1 - 2x_2 + 3x_3 + 2x_4 = 16$ $2x_1 - 3x_2 + 2x_3 + 3x_4 = 9$ $5x_1 + 3x_2 - 5x_3 + 4x_4 = 7$ $4x_1 + 2x_2 + 2x_3 - 3x_4 = 16$

- 5. Find the dominant Eigen value and corresponding vector of the following matrix using the Power Method. [8]
 - $\begin{bmatrix} 5 & 2 & 3 \\ 2 & 4 & 2 \\ 3 & 2 & 5 \end{bmatrix}$
- 6. Write the pseudocode to fix a given set of data to a second degree polynomial $(y = a + bx + cx^2)$ using the Least Square Method. [8]
- 7. Fit the following data to the curve $y = ax^{b}$ using least square method.

x	350	400	500	600	
У	61	26	7	2.6	

- 8. Evaluate $\int_{0}^{2} (\sin x + \cos x) dx$ using Gaussian 3-point formula.
- 9. Derive the formula for computing first and second derivative using Newton's forward difference interpolation formula.
- 10. Solve the following boundary value problem using Shooting Method employing Euler's [10] formula taking a step-size of 0.25.

y''=x-y+y' subject to boundary conditions y(0) = 2 and y(1) = 3

11. Solve the elliptic equation (Laplace) $\mu_{xx} + \mu_{yy} = 0$ for the square mesh $0 \le x \le 1, 0 \le y \le 1$ where $h = \Delta x = 0.25$ and $k = \Delta y = 0.25$ with the following boundary conditions: [10]

u(0.25, 0) = 500 | u(0.5, 0) = 1000 | u(0.75, 0) = 500 | u(1, 0) = 0u(0,0) = 0u(1, 0.25) = 1000u(0, 0.25) = 1000u(1, 0.50) = 2000u(0, 0.50) = 2000

[8]

[6]

[6]

[6]

[8]

05 TRIBHUVAN UNIVERSITY	Exam.	New Back (2)	066 & Later I	Batch)
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	BCE, BME, BIE	Pass Marks	32
2073 Shrawan	Year / Part	III / I	Time	3 hrs.
Subject: - Nume	erical Method	ls (SH603)		
 ✓ Candidates are required to give their ans ✓ Attempt <u>All</u> questions. ✓ The figures in the margin indicate <u>Full 1</u> ✓ Assume suitable data if necessary. 		wn words as far as	s practicable.	
1. Construct Divided Difference table from	the following	data:		[4
		6 19		
2. Find an approximation of the root of method correct to three decimal places.	the equation a	$x^3 - x - 11 = 0$ by	using Bisect	tion [6
 Write an algorithm for finding a real room method. 	ot of non-linea	r equation using]	Newton Raphs	son [6
4. Solve the following system of linear equa	ations using Ga	uss-Seidal iteration	on method.	[8]
$6x_1 + x_2 - x_3 + 2x_4 = 4$				
$2x_1 + 5x_2 - 4x_3 + 6x_4 = -5$				
$x_1 + 4x_2 + 3x_3 - x_4 = 2$				
$x_1 + x_2 + 2x_3 + x_4 = 5$				
5. Find the largest Eigenvalue and correspondence power method.	onding Eigenve	ector of the follow	ring matrix usi	ing [8]
$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$				[-]
6. Evaluate y(10) by using Lagrange's interp		a from the follow	ing data:	[8]
	6911131416			
7. Using least square method, fit a curve $y =$	= ae ^{bx} to the fol	lowing data:		[8]
x 4 5.5 y 18.47 39.11	7 8 82.79 136.5	10		
8. Find the value of $\cos(1.74)$ from the follo	and the second sec			[4]
x 1.7 1.74	1.78 1.8	2 1.86		[4]
sinx 0.9916 0.9857		691 0.9584		
9. Derive composite simpson's three-eight for				[6]
10. Write Psudocode to solve a first order diff			ethod	[6]
11. Solve the boundary value problem y"+xy	$y'+y = 3x^2 + 2, y$	y(0) = 0, y(1) = 1	~	[6] [6]
12. Solve the laplace equation $U_{xx} + U_{yy} = 0$			ary condition	
shown in figure.	100 00	Bria min bound	ury condition	as [10]

80 100 80 50 60 50 U1 U4 U7 U2 U3 U6 U9 50 60 50 U5 U8

[10]

05 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division 2072 Chaitra

Exam.	Regular					
Level	BE	Full Marks	80			
Programme	BCE, BME, BIE	Pass Marks	32			
Year / Part	III / I	Time	3 hrs.			

[4]

[8]

[8]

[4]

[4]

[10]

Subject: - Numerical Methods (SH603)

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> guestions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Write an algorithm to solve a non-linear equation using secant method. [6]
- Find the positive root of equation cosx -1.3x = 0, correct to six decimal places using Newton Raphson Method. [6]
- 3. Discuss the limitations of fixed point iteration methods graphically.
- 4. Using Factorisation method, solve the given system of linear equations.

$$2x-5y+z=12$$
$$-x+3y-z=-8$$
$$3x-4y+2z=16$$

- 5. Find the largest eigen value and corresponding eigen vector of the matrix: [8]
 - $\begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$

6. using least square method, fit a curve $y = ax^2 + bx + c$ to the following data: [8]

X	20	40	60	80	100	120
у	5.5	9.1	14.9	22.8	33.3	46.0

7. Use cubic spline interpolation to estimate f(2.5) from given table.

X	1	2	3	4
f(x)	0.5	0.3333	0.25	0.20

- 8. Derive Newton-cotes quadrature formula for integration and use it to obtain the trapezoidal rule of integration. [6]
- 9. The following table gives distance (s) of a particle at time (t):

	t	0.2	0.4	0.6	0.8	1.0	1.2
3	S	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the velocity at time t = 0.3

- 10. Write Pseudocode to solve a first order differential equation using Euler's method.
- 11. Using Fourth order Runge-Kutta method, solve the following differential equation for y at x = 0.2 and x = 0.4: [8]

$$y''-xy'^2+y^2=0, y(0)=1, y'(0)=0$$

12. Solve Poisson's equation $u_{xx} + u_{yy} = 729x^2y^2$ over the square domain $0 \le x \le 1, 0 \le y \le 1$ with step size h = 1/3 with u = 0 on the boundary.

05 TRIBHUVAN UNIVERSITY	Exam.	New Back (2066 & Later Batch)		
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	BCE, BME, BIE	Pass Marks	-32
2072 Kartik	Year / Part	Ш/І	Time	3 hrs.
Subject: - Num	erical Method	ls <i>(SH603)</i>		

✓ Candidates are required to give their answers in their own words as far as practicable.

Attempt <u>All</u> questions.

The figures in the margin indicate *Full Marks*.

✓ Assume suitable data if necessary.

. Show that the following data pairs satisfy a cubic polynomial by constructing a divided difference table.

1	x	1	2	- 4	5	7	8	
	у	8.8	5.5	3.7	4.0	4.0	2.5	

2. Find a positive real root of the equation $xe^{x} + \sin x = 0.5$ with an accuracy of 6 decimal places using Newton-Raphson Method.

 Write pseudo-code to find a real root of a given non-linear equation using Secant Method. [6]
 Solve the following system of linear equations using Factorization Method. [8] 9x₁+5x₂-8x₃=19

 $5x_1 - 3x_2 + 8x_3 = 19$

 $7x_1 + 4x_2 - 5x_3 = 19$

OR

Write a high-level language (C/C++/FORTRAN) program to compute the inverse of a non-singular square matrix using Gauss Jordan Method.

5. Find the largest Eigen value and corresponding vector of the following matrix using Power Method.

[1.4	1.3	2.2	.
1.3	3.5	1.5	
2.2	1.5	3.2	

6. Fit the following set of data to a curve of the form $y = a \log_{a} x + b$

ſ	x	2	4	6	8	10	12	14
	у	4.7	7.2	8.3	9.6	10.4	10.7	10.9

Evaluate y (1.6), y (7.8) and y (4.2) from the following data using appropriate polynomial interpolation technique used for equally spaced intervals.
 [8]

X	1	2	3	4 ·	5	6	7	8
У	2.3	1.8	2.0	3.0	4.4	5.0	3.9	1.7

8. Derive formula for first derivative using Newton forward interpolation formula.

9. Evaluate $\int_{1}^{11} x \sin x dx$ using 3-point Gauss Legendre formula.

- 10. Solve $y' = \sin x + \cos y$, $y(0) = \pi$ in the range $0 \le x \le 2$ by dividing the interval into 5 subintervals using Euler's method.
- 11. Apply Runge-Kutta method of fourth order to find y(0.5) and y(1) from following equation $\frac{dy}{dx} = \frac{y^2 + x^2}{x + y}$ with y(0) = 1. [8]
- 12. Solve the Poisson's equation $\nabla^2 u = x^3 + y^3$ over the square region $0 \le x \le 3$ and $0 \le y \le 3$ subject to u(x,0) = 0, u(0,y) = 0, u(3,0) and u(0,2) = 0 taking $\Delta x = \Delta y = 1$.
 - [10]

[4]

[6]

[8]

[8]

[5]

[5]

[4]

Regular Full Marks 80
, BIE Pass Marks 32
Time 3 hrs.
)
far as practicable.
mal places using Bisection
ation using False Position
real-root of a non-linear
•
та станования и служи станования и служи станования и служи станования и служи служи станования и служи служи Спорти и служи с Служи служи
ower Method.
$\frac{1}{2}$
terpolation method.
tion technique.
to complete Largrange's
to complete Largrange's
tion:
nal places.
and $y(2) = 4$ in the range inite difference method.
rder ordinary differential sides $x = 0 = y$, $x = 3 = y$
5

P.101

05	TRIBHUVAN UNIVERSITY
INST	ITUTE OF ENGINEERING
Exami	nation Control Division
n an he Nisi Nisi	2071 Shawan

Exam.	New Back (2066 & Later Batch)				
Level	BE	Full Marks	80		
Programme	BCE, BME, BIE	Pass Marks	32		
Year / Part	III / I	Time	3 hrs.		

Subject: - Numerical Methods (SH603)

- Candidates are required to give their answers in their own words as far as practicable. Attempt All questions.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.

1. Find a real root of the following equation, correct to four decimals, using the False Position method.

$$x^3 - 5x - \sin(x) - 6 = 0$$

- 2. Derive analytically the iteration formula for Newton-Raphson method to find a real root of a non-linear equation.
- 3. Write an algorithm to find a real root of a non-linear equation using the Bisection Method.
- 4. Solve the following system of linear equations using the Gauss-Seidal Iteration Method.

$$9x_1 + 2x_2 - 3x_3 = 10$$

$$5x_1 + 11x_3 + 2x_4 = 30$$

$$x_2 + 3x_3 + 7x_4 = 25$$

$$2x_1 + 8x_2 - 2x_4 = 15$$

OR

Write pseudo-code for solving a system of linear equations using the Gauss Elimination Meythod.

5. Find the dominant Eigen value and corresponding vector of the following matrix using the Power method. [8]

1	1	4	3	
	42	2 6	7 5	

6. Evaluate f(2.5) from the following data using Newton's Divided difference interpolation formula:

x	1	2	3	4	5	6
f(x)	8.9	9.2	16.3	35.5	72.5	132.4

7. Fit the following data to an exponential curve of the form $y = ab^{x}$.

x	2	4	6	8	10
y	2	6	25	115	300

8. Find y'(0.2) and y''(0.2) from the following data:

x	0.1	0.2	0.3	0.4	0.5
y	2.6	8.2	15.4	25.6	37.8

9. Evaluate the following using Gaussian three point formula:

$$\int_{0}^{2} x \sin(\cos x) + 2 \, dx$$

[5]

[5]

[8]

[8]

[6]

[4]

[6]

[8]

10. Solve the following initial value problem using the Modified Euler's method for $0 \le x \le 0.6$ with an interval of 0.2

$$\frac{dy}{dx} = \sin x + \cos y; \quad y(0) = 3$$

- 11. Explain the technique of solving a two-point boundary value problem using the shooting method.
- 12. Solve $u_{xx}+u_{yy}=0$ for the following square mesh with boundary conditions as shown in the figure.

; [6]

[6]

[10]

05	TRIBHUVAN UNIVERSITY			
INST	TITUTE OF ENGINEERING			
Examination Control Division				
2070 Chaitra				

Exam.	Regular					
Level	BE	Full Marks	80			
Programme	BCE,BME,BIE	Pass Marks	32			
Year / Part	III / I	Time	3 hrs.			

Subject: - Numerical Methods (SH603)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- 1. How do we obtain a real root of a non-linear equation using Secant method? Explain graphically and hence deduce the iteration formula.
- 2. Write an algorithm to find a real root of a non-linear equation using Bisection method. [4]
- Find a positive real root of sin(x) + cos(x) + e^x- 8 = 0 correct up to 4 decimal places using Newton-Raphson method.
- 4. Solve the following system of equations using the LU Factorization method.

4x + 3y + z = 332x + 5y + 3z = 412x + y + 5z = 47

- 5. Obtain the numerically dominant Eight value and corresponding eigen vector of the following matrix, using power method.
 - $\begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$
- 6. From the following data, find the cubic polynomial between x = 3 and x = 4 using the natural cubic Spline interpolation technique.

x	2	3	4	5	6
у	5	6	4	3	2
		0	R		

Write a program in C to numerically interpolate a value from a given data set using Lagrange's interpolation formula.

7. Fit the following set of data to a curve of the form $y = a e^{bx}$

x	1	2	3	4	5	6	7	8
у	2	3	4	5	7	10	15	30

8. A slider in a machine moves along a fixed straight rod. Its displacement x cm. along the rod is given below at different instant of time t seconds. Find the velocity of the slider and its acceleration when t = 0.2 seconds.

t	0.0	0.1	0.2	0.3	0.4
x	30.13	31.62	32.87	33.64	33.95

[4]

[8]

[4]

[8]

[8]

9. Evaluate the following integral correct to three decimals using Romberg's method.

$$\int_{2}^{4} \left(4 + \frac{\cos(X)}{e^{\sin x}}\right) dx$$

10. Using the finite difference approximation, solve the following boundary value problem for three interior points. [8]

y''+4y'-3y = sin(x); with boundary conditions y(2) = 3 and y(4) = 4

- 11. Write pseudo-code to solve an initial value problem (first order ordinary differential equation) using the Runge-Kutta fourth order method.
- 12. Solve the Poisson's partial differential equation $u_{xx} + y_{yy} = -10(x^2 + y^2 + 10)$ over the region $0 \le x \le 3$ and $0 \le y \le 3$ with boundary conditions: u(0, y) = 0, u(3, y) = 0, u(x, 0) = 0 and u(x, 3) = 0 Assume mess length = 1
 [10]

[6]

[6]

06	TRIBHUVAN UNIVERSITY
INST	TITUTE OF ENGINEERING
Exami	nation Control Division
	2070 Chaitra

Exam.	Old Back (2065 & Earlier Batch)						
Level	BE	Full Marks	80				
Programme	All (except B. Arch)	Pass Marks	32				
Year / Part	III / I	Time	3 hrs.				

[8]

[8]

[8]

[8]

[8]

- \checkmark Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt any *Five* questions. *Question No. 6 is compulsory*.
- The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- Use the Bisection method to find a real root having accuracy within 10⁻² for x³-7x²+14x-6=0 on the interval [0,1].
 - b) Let $f(x) = -x^3 \cos x$, find a real root using secant method with accuracy 0.01.
- 2. a) Construct the interpolating polynomial of degree four for the unequally spaced points given in the following table:

x	0.0	0.1	0.3	0.6	1.0
f(x)	6.000000	-5.89483	-5.65014	-5.17788	-4.28172

Find the value for x = 2.5 using polynomial.

b) Estimate coefficient of Y = ax+b for following data using least square method.

x	4	5	6	7	8	9
у	14	12	11	9	6	4

3. a) A car laps a race track in 84 s. The speed of the car at each 6-s interval is determined using a radar gun and is given from the beginning of the lap, in feet/second, by the entries in the following table.

Time	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	-
Speed	124	134	148	156	147	133	121	109	99	85	78	89	104	116	123	

Calculate the acceleration at t = 12S and t = 54S.

- b) Approximate the following integrals using Gaussian quadrature with n=2 and compare your results to the values of the integrals $\int_{0}^{1} x^2 e^{-x} dx$. [8]
- 4. a) Solve the following linear algebraic equation using Gauss-Jordan method:

 $X_1 + 3X_3 + 2X_4 = 17$

 $3X_2 + 3X_3 + 2X_4 = 18$

 $-2X_1 + 2X_2 + X_3 = 20$

- b) Solve the following equations using Jacobi' Iteration method. [8] 3x + 4y + 15z = 54.8; x + 12y + 3z = 39.66; 10x + y - 2z = 7.74
- 5. a) What is initial value problem and boundary value problem? Explain with example. [4]
 - b) Using Runge Kutta method of order 4^{th} , solve y'' = y + xy', given that y(0) = 1, y'(0) = 0, find y(0.2) and y'(0.2) with step size h = 0.1
- 6. Write an algorithm, flow chart and Pseudo code to solve system of equation by Gauss-Jordan method. Program should capable to solve 2 to 10 system of equations. [16]

05 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division

2068	Chaitra	

Exam.		Regular 🗧	nd a see
Level	BE	Full Marks	80
Programme	BCE, BME, BIE	Pass Marks	32
Year / Part	III / I	Time	3 hrs.

[4]

[8]

[8]

[4]

[6]

[10]

Subject: - Numerical Methods (SH 603)

 \checkmark Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt <u>All</u> questions.

1. G

✓ The figures in the margin indicate *Full Marks*.

✓ Assume suitable data if necessary.

Senerate the forwa	ard differ	ence	table fro	m the fo	ollowing	, data:			[4]
	х	0	1	2	3	4	5	6	
	f(x)	0	2.2	4.7	8.5	14.3	20.7	30.1	

2. Derive iterative formula for Newton-Raphson method using Taylor-series.

3. Find a root of the equation x^3 -4x-9=0, using bisection method, correct upto three decimal places.

4. Solve the following system of linear equations using the factorization method.

2x+2y+3z = 173x+2y+z = 125x+2y+2z = 18

OR.

Write the Pseudo-code for solving a system of linear equations using the Gauss Jordan Method.

5. Find the dominant Eigen value and corresponding Eigen vector of the following matrix using the Power [8]

$$\begin{bmatrix} 1 & -2 & 3 \\ -2 & 4 & 2 \\ 3 & 2 & 9 \end{bmatrix}$$

6. Using Lagrange interpolation formula, find the value of f(1.3) from following data [8]
7. Estimate the co-efficients of y = ax+b for the following data using least square method. [8]

X	-2.0	-1.0	0.5	2.0	3.0	5.5
Y	-0.4	1.2	3.5	6.0	7.4	11.0

8. Derive the expression for evaluating derivative by forward difference method.

9. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using Simpson's 1/3 rule taking unit interval size.

10. Solve $\frac{dy}{dx} = y - \frac{3x}{y}$, y(0) = 1.5 in the range $0 \le x \le 0.4$ taking h = 0.2 using Modified Euler's method,

performing iteration for an accuracy of four decimal places in each step.

11. Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary conditions as exhibited in the figure below. [12]

05 TRIBHUVAN UNIVERSITY	Exam.	DE	Regular	00
INDITIOIL OF LIGHTLEIGHT	Level	BE BCE, BME,	Full Marks	80
Examination Control Division	Programme	BIE	Pass Marks	32
2069 Chaitra	Year / Part	III / I	Time	3 hrs
Subject: - Nume	rical Method	e (SH603)		
 Candidates are required to give their ans Attempt <u>All</u> questions. 	swers in their o	wn words as fa	r as practicable) .
The figures in the margin indicate $Full$.	Marks.			
✓ Assume suitable data if necessary.	· · ·			
 Using the divided different table, sl polynomial. 	how that the	following dat	a satisfies a	cubic
	5	7 9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.7 418.1	,	
2. Write an algorithm to find a real root of	······ A		isection Metho	d.
3. Find a real root of the following equa		_		
method. $e^{\cos x} = \sin x$			an anne mo n	Juli
4. Solve the following system of linear equ	nations using G	auss-Seidel's m	ethod	
•••••••••••••••••••••••••••••••••••••••				
$-x_1 - x_2 - 2x_3 + 10x_4 = -9$ 10x ₁ -2x ₂ -x ₃ -x ₄ = 3	- <i>7</i> ,	3-74= 9	>	
$-2x_1 + 10x_2 - x_3 - x_4 = 15$	9	5 7 7		
$-x_1 - x_2 + 10x_3 - 2x_4 = 27$ Your answer must be correct to three de	cimal places.			
	OR			
Write pseudo-code to solve a system of		s of 'N' unknov	vns using the G	auss-
elimination method.				
5. Obtain the numerically dominant Eig	en value and	corresponding	eigenvector o	of the
	15 -4 -	-		
following matrix using Power Method.	10 12 - -20 4 -	6		
	-20 4 -2	2		
6. Using the Cubic Spline interpolation	technique, esti	imate the valu	e of y(9) from	n the
following data:		_		
x 4	6 8 10	4		
y 2	5 8 6	hx		
7. Fit the following set of data to a curve o	f the form $y = a$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 5	$\frac{6}{28}$ 17		•
y 15.1 10.2		3.8 1.7		1 • •
 A rod is rotating in a plane. The following the rod is turned for various values of the 			lians) through v	which
	0.6 0.8			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.12 2.02			

Calculate the angular	velocity	and the	angular	acceleration	of the rod,	when $t = 0.2$ and
1.0 second.						

1

9. Derive simpson's 1/3 rule for integration. Evaluate the following integral using Simpson's

1/3 rule, taking h = 0.25 $\int_{0}^{1} \frac{e^{x}}{x+1} dx$

10. Solve the following boundary value problem using the finite difference method by dividing the interval into four sub-intervals. $\frac{d^2y}{dx^2} = \sin x + y$; y(0) = 3; y(1) = 4

- 11. Write pseudo-code to solve an initial value problem (first order ordinary differential equation) using Euler's method.
- 12. Solve the Poisson's equation $u_{xx} + u_{yy} = -81xy$, 0 < x < 1, 0 < y < 1 with boundary condition: u(0,y) = u(x,0) = 0 and u(1,y) = u(x,1) = 100; taking h = 1/3. [10]

[4+2]

[8]

[4]

05 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2068 Chaitra

Exam.	Regular						
Level	BE	Full Marks	80				
Programme	BCE, BME, BIE	Pass Marks	32				
Year / Part	III / I	Time	3 hrs.				

[4]

[4]

[8]

[4]

[6]

. [10]

Subject: - Numerical Methods (SH 603)

✓ Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt <u>All</u> questions.

1.

✓ The figures in the margin indicate <u>Full Marks</u>.

✓ Assume suitable data if necessary.

Generate the forwa	ard differ	ence	table fro	m the fo	ollowing	data:		
	х	0	1	2	3	4	5	6
	f(x)	0	2.2	4.7	8.5	14.3	20.7	30.1

2. Derive iterative formula for Newton-Raphson method using Taylor-series.

3. Find a root of the equation $x^3-4x-9=0$, using bisection method, correct up to three decimal places. [8]

4. Solve the following system of linear equations using the factorization method.

2x+2y+3z = 173x+2y+z = 125x+2y+2z = 18

OR

Write the Pseudo-code for solving a system of linear equations using the Gauss Jordan Method.

Find the dominant Eigen value and corresponding Eigen vector of the following matrix using the Power method.

6. Using Lagrange interpolation formula, find the value of f(1.3) from following data [8]

X	1	3	4
Y	4.28	2.18	4.13

7.	Estimate the co-efficients of $y = ax+b$ for the following data using least square method.	[8]
7.	Estimate the co-efficients of $y = ax + 0$ for the following data using least square method.	Le Le

Χ	-2.0	-1.0	0.5	2.0	3.0	5.5
Y	-0.4	1.2	3.5	6.0	7.4	11.0

8. Derive the expression for evaluating derivative by forward difference method.

- 9. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using Simpson's 1/3 rule taking unit interval size.
- 10. Solve $\frac{dy}{dx} = y \frac{3x}{y}$, y(0) = 1.5 in the range $0 \le x \le 0.4$ taking h = 0.2 using Modified Euler's method,

performing iteration for an accuracy of four decimal places in each step.

11. Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary conditions as exhibited in the figure below. [12]

	3	TRIBH	UVAN UNIVER	RSITY		Exam				Regular / I	Back	
	IN S	STITUTE	OF ENGINI	EERING	ł	Level		BE		Full N		80
Ex	an	nination	Control	l Divis	ion	Progr	amm		(Except .rch.)	Pass N	Marks	32
		2068	Baishak	h				Time		3 hr		
				Subject			-1 N /	- 411				
				Subjec								
\checkmark	Att Th	empt any <u>i</u> e figures ir	te required t Five question the margin ble data if n	ns. Ques indicate	stion N 2 <u>Full</u>	Vo. 6 is a	their compu	own w <i>ilsory</i> .	vords as	far as prac	ticable	e.
1.	a)	Find the bisection	root of the method.	equation	n e ^x –	$3\mathbf{x} = ($) corr	ect up	to three	e decimal	places	using
	b)	Find the 1	eciprocal of	3 using	Newt	on Raph	ison m	nethod.	-			
2.			ewton's forw	-		-				the follow	ving da	ita.
	,		x 1	2	3	4	5	6	7	8	0	
			y 1	8	27	64	125	216	343	512		
	b)	Obtain a squares.	relation of	the form	n y = a	ae ^{bx} for	the fo	ollowin	ng data	by the me	thod of	f leas
		squares.	x: 0.0	0.5		1.0	1.5	2.0	2	.5		
			y: 0.10				9.15	40.3	5 180).75		
	b)	-	king the initi city V of a ow:							its path is	given	in the
			S (ft)	0	10	20	30	40	50	60		
	• 		V (ft/sec)	47	58	64	65	61	52	38		
			the time ta the result w					f 60ft	by usi	ng Simpso	n's 1/.	3 rule
4.	a)		largest eiger the following						digits a	and corresp	onding	g eige
				÷ ,		Г1 0	·~7				``	
				•	A =	$\begin{vmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 4 \end{vmatrix}$	4					
						3 4	5					
	·b)	Use Gau	ss Jordan m	ethod to	find tl	- ne inver	se of t	he foll	owing	matrix.		
				• •			_				•	
			.		A =	$= \begin{bmatrix} 2 & 2 \\ 1 & 3 \\ 1 & 2 \end{bmatrix}$	1					
						1 2	2		-			
		· ·				-	-					
	•	• . •		•								•
								•				· .
	1. ¹											÷
						14 - E						

- 5. a) Solve $y' = xy + y^2$, y(0) = 1 for y(0.1) and y(0.2) using Runge-Kutta method of fourth order.
 - b) Consider a metal plate of size 30cm × 30cm, the boundaries of which are held at 100°C. Calculate the temperature at interior points of the plate. Assume the grid size of 10cm ×10cm.

6. Write algorithm, flowchart and program code in any one of the high level languages (FORTRAN or C) to fit the parabola $y = a + bx + cx^2$ where a, b and c are constants, Hence find the value of y when x is an user defined value.

[8]

[16]

.4

[8]

	03	TRIBHUVAN UNIVERSITY	Exam.		gular/Back	
		STITUTE OF ENGINEERING	Level	BE All (Except	Full Marks	80
E E	xan	nination Control Division	Programme	B.Arch.)	Pass Marks Time	32
			Year / Part	III / I	<u> 11106</u>	3 hrs.
ي، دو 	•	Subject: - N	umerical Met	hods 2e	Sigce	
`` ` √	Ca	ndidates are required to give their and	wers in their o	wn words as far	as practicable	•
		empt any Five questions. Question N		sory.	-	
		e figures in the margin indicate	Marks 2		·.	
		sume suitable data if nedessary	in the second			
1	. a)	Find at least one root of $x - x - 3$ method.	= 0 with the a	ccuracy of 0.08	3%, using Bise	ction
	1 3	Find an approximate root of the		. .		. [
	ָb)	find an approximate root of x decimal places of accuracy.	$10 \times -1.2 =$	0 using secant	method upto	three [
2	. a)	Use a suitable method to fit an expon	nential curve v	$= ae^{bx}$ for the f	ollowing data:	· [
_	,			4 5	snowing dutu.	L
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $.35 12.2	. ,	
	b)	The followings are the measureme	مصد المستجمع علم الم	الصبي ويتركب والمسترج المستوج والمستوج و	rve recorded 1	bv an
	5)	oscillograph representing a change in				[
		t (time) 1.2	2.0 2.4			
		I 1.36	0.58 0.3	4 0.20		-
		Find the value of I when $t = 1.6$ v	with appropria	e Newton's G	regory Interpo	lation
		method.				
2	->	$F_{1} = \{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{5}$	· d ·		have a sint for	مادمس
·	. a)	Evaluate $I = \int_0^2 \frac{(x^2 + 2x + 1)}{1 + (x + 1)^4} dx$ u	ising Gauss tv	vo point and t	njee point foi	muia.
		Also, compare results obtained from		ods.	the starts	·
		anno-aiteach Acteach is at	, , , , , , , , , , , , , , , , , , ,	-2 4]	t gansii t sell.	nantos († 1. 1.
	b)	Find the largest Eigen value of the n	natrix $A = \begin{vmatrix} 2 \end{vmatrix}$	3 2 usin	g power metho	d.
				1 1	01	
	2	Solve the metane of emotions simple	, L	لہ	mothed with	nortial
4	. a)	Solve the system of equations given pivoting.		•		paruai
		$2x_1 + x_2 + x_3 - 2x_4 = -10$				11111
	•	$4x_1 + 2x_3 + x_4 = 8$	•			•
	·	$3x_1 + 2x_2 + 2x_3 = 7$				
		$x_1 + 3x_2 + 2x_3 - x_4 = -5$	· • ·			• •
	b)	Solve the following differential e	quation within	$0 \le x \le 0.4$	using RK 4 th	order
		method. $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 3y = 6x$, with	h v(0) = 0 and	v'(0) = 1. (take	h = 0.2)	
• •		ux ux				
5	5. a)	e i			le θ (radian) tl	hrough
1		which the rod has turned for various			·	
	•	t 0 0.2 0.4		0.8 1.0		
		$\begin{array}{ c c c c c } \hline \theta & 0 & 0.12 & 0.4 \\ \hline \end{array}$		2.02 3.20	and a second design of the	record
		Calculate the angular velocity and a			1.4.4	
	b)					
	1	with $h = k = 1$. Consider $f = 0$ at all				
. (evelop algorithm, flowchart and pro			t any points w	rithin a
	gi	ven set of data using Lagrange's inter	rpolation metho	Da.		. 1

03 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING Examination Control Division

2066 Jestha

Exam.	Back						
Level	BE	Full Marks	80				
Programme	All (Except B.Arch.)	Pass Marks	32				
Year / Part	Ш/І	Time	3 hrs.				

[8]

[8]

[8]

[8]

[8]

Subject: - Numerical Methods

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- Attempt any <u>Five</u> questions. Question No. 6 is compulsory.
- The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- 1. a) Find a real root of the following equation using Harner's rule, correct upto three decimal places. $x^3 6x^2 + 11x 6 = 0$
 - b) Estimate a root of $x^2 + lnx = 3$, using Bisection method, correct up to three decimal places.
- a) Using Newton's forward difference formula or Lagrange interpolation estimate the square of 3.25, if.
 [8]

X	1	2	3	4	5
X^2	1	4	9	16	25

b) Fit the following data to the function y = ln (ax + b) using least square method.

Γ	Х	-2.0	-1.0	0.5	2.0	3.0	5.5	
Γ	Y	0.4	1.2	3.5	6.0	7.4	11.0	

3. a) Using trapezoidal, Simpon's 1/3 (Composite) formulate with number of strips, n = g, evaluate $\int_{0}^{\pi} \sqrt{1.3 \cos x} \, dx$.

b) Use Romberg Integration method to evaluate $I = \int_0^2 \frac{e^x + e^{-x}}{2}$ correct up to three decimal places. [8]

4. a) Find out the largest Eigen value and corresponding Eigen vector from the following square matrix:
 [8]

 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 4 & 6 \\ -1 & -2 & 3 \end{bmatrix}$

- b) Solve the following linear algebraic equations using Cholesky's factorization method. [8] 2a + 3b + 4c = 20
 - 3a + 4b + 5c = 264a + 5b + 6c = 32
- 5. a) Determine y at x = 1, using RK second order (RK-2) method. (take h = 0.5) $\frac{dy}{dx} = \frac{1}{x + y}, \quad y(0) = 2$
 - b) Solve the following differential equation within 0 ≤ x ≤ 1, h = 0.5 using Euler's method.
 [8]

 $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + y = 2x \text{ with } y(0) = 0 \text{ and } y'(0) = 2.$

6. Write an algorithm, flowchart, and computer program in any of the language C or FORTRAN to solve a system of linear equations using Gauss elimination method with partial pivoting.
[6+4+6]

03 TRIEHUVAN UNIVERSITY	Exam.	R	egular / Back	
INSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
Examination Control Division	Programme	All (Except B.Arch.)	Pass Marks	32
2066 Bhadra	Year / Part	III / I	Time	3 hrs.
Subject: - N	lumerical Me	thods		
 Candidates are required to give their an Attempt any <u>Five</u> questions. Question I The figures in the margin indicate <u>Full</u> Assume suitable data if necessary. a Find a real root of the equation x³ 	Vo. 6 is compul. <u>Marks</u> .	sory.		
correct to six decimal places.				[8
by Calculate a real root of non-linear e Method. The absolute error of func- than 10 ⁻⁴ .				
2. ray Use appropriate method of interpola	ation to get f(0.6	575) from the p	given table.	[8]
x 0.125 0.25	0.375	0.5		.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7437			5022
b) Use the suitable method to fit a qua				
	······	ax + bx + C		
x -3 -2 y 4.63 2.11	-1 0 0.67 0.09	0.63	2.15	3
y 4.63 2.11	0.07 0.05	0.03	2.15	+.30
3. a) Evaluate the integral $I = \int_{0}^{1} e^{-x^2} dx$	and compare	the result in	both condition	ns for
Simpson's 1/3 rule and 3 point Gau	iss Legendre me	ethod.		[10
b) The following data gives correspo	nding values o	f pressure (P)	and specific v	olume
(V) of superheated steam:				[(
V 2	4 6	8 10	-	
P 105 42		6.7 13		
Find the rate of change of pressure			V - 2 and $V - 1$	Q.
			· · · · · ·	•
4 a) Using the power method, find the l	argest eigen val	ue of the follow	wing matrix.	[(
$A = \begin{vmatrix} 1 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix}$				
b) Solve the following system of lines	ar equations by	Gauss-Elimina	tion method.	[1

 $5x_1 + x_2 + x_3 + x_4 = 4$ $x_1 + 7x_2 + x_3 + 4x_4 = 6$ $x_1 + x_2 + 6x_3 + x_4 = -5$ $x_1 + x_2 + x_3 + x_4 = 0$

5. (a) Use second order Runge-Kutta method to solve $\frac{dy}{dx} + xz = 0$; $\frac{dy}{dx} - y^2 = 0$ at x = 0.2and 0.4 given that y = 1, z = 1 at x = 0. [8]

b) Apply Runge Kutta fourth order method to approximate the value of y when x = 0.2. and 0.4 given that y' = x + y, y(0) = 1. [8]

Write an algorithm, flowchart and program code in any high level language to solve a system of linear equations in 'n' unknowns using the Gauss Jordan Method. The program should display the augmented co-efficient matrix at each step of elimination. [5+5+6]

9

	02	TRIBHUVAN UNIVERSITY	Exam.		legular/Back	
	INS	TITUTE OF ENGINEERING	Level	BE ·	Full Marks	80
E	xam	ination Control Division	Programme	All (Except B.Arch.)	Pass Marks	32
	<u>.</u>	2065 Shrawan	Year / Part	III / I	Time	3 jars.
	/	1		1 1	/	
	•	Subject: - N	lumerical Me	thods		
↓	Atte The	didates are required to give their an empt any <u>Five</u> questions. Question I figures in the margin indicate <u>Full</u> ume suitable data if necessary.	Vo. 6 is comput		ar as practicable	
1.	· · ·	Find the point with accuracy 0.0 intersecting, using bisection method	1.	•	•	• • • •
· · · ·	b)	Calculate the root of non-linear eq The absolute error of functional val				
2	. a)	Find the missing values of collected	i water level us	ing Lagrange'	interpolation.	
		Time duration of rainfall (t) min	1	3		10
	_	Collected Water level (h) mm	23	61	? 2	203
	b)	Use the suitable method and det following data:	ermine the ex	ponential fit o	of $y = Ce^{Ax}$ for	or the
•		X 0 -	1	2	3 4	4
· .		Y 1.5	2.5 - 3	3.5 . 5	5.0 7.	.5
		- 1.5				
3	. a)	Evaluate the integral $I = \int \sin x dx$,	, compare the a	absolute error i	in both conditic	ns for
		0 0	10 1			
	-	Simpson 1/3 rule and Simpson's 3/				
	b)	Use Romberg Integration find the i	ntegral of e [*] sin	n x between the	e limits –1 and 1	
			$\begin{bmatrix} 2 & -2 & 4 \end{bmatrix}$			
4	. a)	Find the inverse of the matrix $A =$	2 3 2	using Gauss-Jo	ordan method.	
			-1 1 1			
	b)		 	1 1 1		
	0)	Solve the following by Gauss Elim		i with complete	e pivoung.	
		2x + 3y + 2z = 2 10x + 3y + 4z = 16 3x + 6y + z = 6				
••••	5. a)		equation withi	n () < v < 1 () using RK Δ^{t}	order
	. ц)	method.				01401
	•	$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 4y = 3x$, with $y(0) = 0$) and y'(0) = 1.	(take h = 0.5)		
	b)	Consider a sheet metal of size 300 at temperature of 50°C and other state temperature at interior points	two sides are	held at 500°C	C. Calculate the	
• •	po	rite algorithm flow chart and pro olynomial of n th degree using Harne f polynomial and display all roots of	er's rule. Your	program shoul	d read the coef	ficients
·			***			•
i						
				•.		

!

3 TRIBHUVAN UNIVERSITY	Exam.	R	egular / Back	
NSTITUTE OF ENGINEERING	Level	BE	Full Marks	80
anination Control Division	Programme	All (Except B.Arch.)	Pass Marks	32
2066 Bhadra .	Year / Part	III / I	Time	3 hrs.
Subject: - N	umerical Me	thods		
Candidates are required to give their ans Attempt any <u>Five</u> questions. Question N The figures in the margin indicate <u>Full</u> Assume suitable data if necessary.	lo. 6 is compuls		ar as practicable	×
a) Find a real root of the equation x ³ correct to six decimal places.	$+x^{2}-1=0$ b	y the fixed pc	int iteration me	ethod,
b) Calculate a real root of non-linear end Method. The absolute error of function than 10^{-4} .				
a) Use appropriate method of interpola	ation to get $f(0.6)$	(575) from the $($	given table.	
x 0.125 0.25 f(x) 0.7916 0.7733	0.375	0.5 0.7041		75 022
b) Use the suitable method to fit a quad	dratic curve y =	$ax^2 + bx + C$	for the followin	g data.
x -3 -2	-1 0	1		3
	0.67 0.09	······	l	.56
a) Evaluate the integral $I = \int e^{-x^2} dx$	and compare	the result in	both condition	ns for
⁰ Simpson's 1/3 rule and 3 point Gau	ss Legendre me	thod.		
b) The following data gives correspon	-		and specific vo	olume
(V) of superheated steam:		L		
V 2 4		8 10		
Find the rate of change of pressure		6.7 <u>13</u>	V = 2 and $V = 9$	
	-			•
a) Using the power method, find the la $\begin{bmatrix} 1 & 6 & 1 \end{bmatrix}$			wing matrix.	
$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix}$				
	4	e E		
b) Solve the following system of linea	r equations by (Gauss-Elimina	tion method.	• • •
$5x_1 + x_2 + x_3 + x_4 = 4$ $x_1 + 7x_2 + x_3 + 4x_4 = 6$	•			

[8]

- 5. a) Use second order Runge-Kutta method to solve $\frac{dy}{dx} + xz = 0$; $\frac{dy}{dx} y^2 = 0$ at x = 0.2
 - and 0.4 given that y = 1, z = 1 at x = 0.

- b) Apply Runge Kutta fourth order method to approximate the value of y when x = 0.2[8] and 0.4 given that y' = x + y, y(0) = 1. . . .
- ·. . 6. Write an algorithm, flowchart and program code in any high level language to solve a system of linear equations in 'n' unknowns using the Gauss Jordan Method. The program should display the augmented co-efficient matrix at each step of elimination. [5+5+6]

	2	TRIBHUVAN UNIVERSITY	Exam.		Regular/Ba	ıck	
	INS	TITUTE OF ENGINEERING	Level	BE	Full M	arks	80
X	am	ination Control Division	Programme	All (Except B.Arch.)	t Pass M	larks	32
		2065 Shrawan	Year / Part	III / I	Time		3 hrs.
			- 4:				
		Subject: - N	umerical Me	thods	1		
		ndidates are required to give their an			s far as pract	icable.	
		empt any <u>Five</u> questions. Question N		sory.			
✓ ✓		e figures in the margin indicate <u>Full</u> ume suitable data if necessary.	<u>Marks</u> .			÷	
•	7155	ame sanable actually necessary.					•
1.	a)	Find the point with accuracy 0.00 intersecting, using bisection method		line $y = x$	- 3 and y	= 1n :	x is
	b)	Calculate the root of non-linear eq The absolute error of functional val	• • •		•		•
2.	a)	Find the missing values of collected	l water level usi	ng Lagrang	e' interpolati	ion.	
		Time duration of rainfall (t) min	1	3	6.5	10)
		Collected Water level (h) mm	23	61	?	203	3
	b)	Use the suitable method and det following data:	ermine the exp	onential fit	$t ext{ of } y = C ext{ of } y$	e ^{Ax} for	the
			1 2	2	3	4	
		Y 1.5	2.5 3	.5	5.0	7.5	
	b)	Evaluate the integral $I = \int_{0}^{0} \sin x dx$, Simpson 1/3 rule and Simpson's 3/3 Use Romberg Integration find the in	B rule. tegral of $e^x \sin \left[2 - 2 4 \right]$	x between t	the limits –1	and 1.	
4	a)	Find the inverse of the matrix $A =$			τ 1		
			$\begin{bmatrix} 2 & 3 & 2 \\ -1 & 1 & 1 \end{bmatrix}$	Ising Gauss-	-Jordan meth	ιοα.	
		Solve the following by Gauss Elim				100.	
••						ιοα.	
•	b)	Solve the following by Gauss Elimit 2x + 3y + 2z = 2 10x + 3y + 4z = 16	ination method	with comple	ete pivoting.		order
•	b)	Solve the following by Gauss Elimit 2x + 3y + 2z = 2 10x + 3y + 4z = 16 3x + 6y + z = 6 Solve the following differential e	nation method	with comple $0 \le x \le 1$	ete pivoting. 1.0 using RI		order
•	b) a)	Solve the following by Gauss Elimit 2x + 3y + 2z = 2 10x + 3y + 4z = 16 3x + 6y + z = 6 Solve the following differential emethod.	ination method equation within and $y'(0) = 1.$ (m by 30cm. Th two sides are h	with complet $0 \le x \le 1$ take h = 0.5 e two adjace held at 500°	ete pivoting. 1.0 using RI) ent sides are °C. Calculate	K 4 th o mainta	ined
5.	b) a) b) W	Solve the following by Gauss Elimit 2x + 3y + 2z = 2 10x + 3y + 4z = 16 3x + 6y + z = 6 Solve the following differential emethod. $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 4y = 3x$, with $y(0) = 0$ Consider a sheet metal of size 30c at temperature of 50°C and other	ination method equation within and $y'(0) = 1.$ (m by 30cm. Th two sides are h assuming a grid gram code of c's rule. Your p	with complet $0 \le x \le 1$ take h = 0.5 take h = 0.5 take two adjace held at 500° size of 10c any high 1 rogram show	ete pivoting. 1.0 using RI) ent sides are C. Calculate m by 10cm. evel langua; uld read the	K 4 th o mainta e the sta ge to s coeffic	iined eady solve ients

•

7

1. C. L. Martin M. M. Martin M. Martin M. Martin M. M. Martin M. Ma Martin M. Martin Martin M. Martin M Martin M. M Martin M. Marti

٢

and the set of

!