
 Compiled by: Er. Sandesh S Poudel

Unit 9 (Graphs)

1. Representation and applications

2. Transitive closure

3. Warshall’s algorithm

4. Graphs type

5. Graph traversal and Spanning forests

• Depth First Traversal and Breadth First Traversal

• Topological sorting: Depth first, Breadth first topological sorting

• Minimum spanning trees, Prim’s, Kruskal’s and Round‐ Robin algorithms

6. Shortest‐path algorithm

• Greedy algorithm

• Dijkstra’s Algorithm

Representation and Application

• A graph is a pictorial representation of a set of objects where some pairs of objects are connected by links.

The interconnected objects are represented by points termed as vertices, and the links that connect the

vertices are called edges.

• Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, connecting

the pairs of vertices.

• Take a look at the following graph.

• In the above graph, o V = {a, b, c, d, e} o E = {ab, ac, bd, cd, de}

 Compiled by: Er. Sandesh S Poudel

0

V o V 1

Undirected:-

A graph which has unordered pair of vertices is called undirected graph. Suppose there is an edge between V0 &

V1 then it can be represented as (V , V1) or (V1, V0).

V(G) = { 1, 2, 3, 4}

 E(G) = {(1, 2), (1, 3), (2, 4), (3, 4)}

Directed:-

A directed graph or digraph is a graph which has ordered pair of vertices (V1, V2) where V1 is the tail & V2 is the

head of the edge.

(V1, V2)

V(G) = { 1, 2, 3, 4}

E(G) = {(1, 2), (1, 3), (2, 4),(3,2), (4, 3),(4,1)}

Representation of graphs:

The following two are the most commonly used representations of a graph.

1. Adjacency Matrix

2. Adjacency List

Let us consider an undirected graph.

Adjacency Matrix:

• Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph.

• Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge from vertex i to vertex j.

• Adjacency Matrix is also used to represent weighted graphs. If adj[i][j] = w, then there is an edge from

vertex i to vertex j with weight w.

1 2

4
3

1 2

4
3

V o V 1

 Compiled by: Er. Sandesh S Poudel

• The adjacency matrix for the above example graph is:

• Adjacency Matrix Representation

 Compiled by: Er. Sandesh S Poudel

Let us take a directed graph

Solution: Let the order of the vertices be a, b, c, d, e, f

 Compiled by: Er. Sandesh S Poudel

Solution:

Let the order of the vertices be a, b, c, d, e, f, g

Adjacency List:

• An array of linked lists is used.

• The size of the array is equal to the number of vertices. Let the array be an array[].

• An entry array[i] represents the list of vertices adjacent to the ith vertex.

• This representation can also be used to represent a weighted graph. The weights of edges can be

represented as lists of pairs.

• Following is the adjacency list representation of the above graph.

 Compiled by: Er. Sandesh S Poudel

 Compiled by: Er. Sandesh S Poudel

Application of Graphs

• In Computer science graphs are used to represent the flow of computation.

• Google maps uses graphs for building transportation systems, where intersection of two(or more) roads

are considered to be a vertex and the road connecting two vertices is considered to be an edge, thus their

navigation system is based on the algorithm to calculate the shortest path between two vertices.

• In Facebook, users are considered to be the vertices and if they are friends then there is an edge running

between them. Facebook’s Friend suggestion algorithm uses graph theory. Facebook is an example of

undirected graph.

• In World Wide Web, web pages are considered to be the vertices. There is an edge from a page u to other

page v if there is a link of page v on page u. This is an example of Directed graph. It was the basic idea

behind Google Page Ranking Algorithm.

• In Operating System, we come across the Resource Allocation Graph where each process and resources

are considered to be vertices. Edges are drawn from resources to the allocated process, or from requesting

process to the requested resource. If this leads to any formation of a cycle then a deadlock will occur.

• LAN

• Communication, Transport Network

• Job assignment

• Circuit design in the Planer Circuit Board (PCB)

Types of Graph:

Simple Graph:

 Compiled by: Er. Sandesh S Poudel

We define a simple graph as 2 – tuple consists of a non-empty set of vertices V and a set of unordered pairs of

distinct elements of vertices called edges. We can represent graph as G = (V, E). This kind of graph has no loops

and can be used for modeling networks that do not have connection to themselves but have both ways connection

when two vertices are connected but no two vertices have more than one connection. The figure below is an

example of simple graph.

Multigraph:

A multigraph G =(V, E) consists of a set of vertices V, a set of edges E, and a function f from E to {{u, v}|u, v Î

V, u ¹ v}. The edges e1 and e2 are called multiple or parallel edges if f(e1) = f(e2). In this representation of graph

also loops are not allowed. Since simple graph has single edges every simple graph is a multigraph. The figure

below is an example of a multigraph.

Pseudograph:

A pseudograph G =(V, E) consists of a set of vertices V, a set of edges E, and a function f from E to {{u, v}|u, v

∈ V}. An edge is a loop if f(e) = {u, u} = {u} for some u ∈ V. The figure below is an example of a multigraph

Directed Graph:

A directed graph (V, E) consists of a set V of vertices, a set E of edges that are ordered pairs of elements of V.

The below figure is a directed graph. In this graph loop is allowed but no two vertices van have multiple edges in

same direction.

 Compiled by: Er. Sandesh S Poudel

Directed Multigraph:

A directed multigraph G =(V, E) consists of a set of vertices V, a set of edges E, and a function f from E to {(u,

v)|u, v ∈ V}. The edges e1 and e2 are called multiple edges if f(e1) = f(e2). The figure below is an example of a

directed multigraph.

Terminologies:

Two vertices u, v are adjacent vertices of a graph if {u, v} is an edge. The edge e is called incident with the

vertices u and v if e = {u, v}. This edge is also said to connect u and v. where u and v are end points of the edge.

Degree of a vertex in an undirected graph is the number of edges incident with it, except a loop at a vertex. Loop

in a vertex counts twice to the degree. Degree of a vertex v is denoted by deg (v).A vertex of degree zero is called

isolated vertex and a vertex with degree one is called pendant vertex.

Example: Find the degrees of the vertices in the following graph.

Solution:

deg(a) = deg(f) = deg(e) = 2 ; deg(b) = deg(c) = 3; deg(d) = 4

Path

A path can be defined as the sequence of nodes that are followed in order to reach some terminal node V from

the initial node U.

 Compiled by: Er. Sandesh S Poudel

Closed Path

A path will be called as closed path if the initial node is same as terminal node. A path will be closed path if

V0=VN.

Simple Path

If all the nodes of the graph are distinct with an exception V0=VN, then such path P is called as closed simple

path.

Cycle

A cycle can be defined as the path which has no repeated edges or vertices except the first and last vertices.

Connected Graph

A connected graph is the one in which some path exists between every two vertices (u, v) in V. There are no

isolated nodes in connected graph.

Complete Graph

A complete graph is the one in which every node is connected with all other nodes. A complete graph contain

n(n-1)/2 edges where n is the number of nodes in the graph.

Weighted Graph

In a weighted graph, each edge is assigned with some data such as length or weight. The weight of an edge e can

be given as w(e) which must be a positive (+) value indicating the cost of traversing the edge.

Digraph

A digraph is a directed graph in which each edge of the graph is associated with some direction and the traversing

can be done only in the specified direction.

Loop

An edge that is associated with the similar end points can be called as Loop.

 Compiled by: Er. Sandesh S Poudel

Adjacent Nodes

If two nodes u and v are connected via an edge e, then the nodes u and v are called as neighbours or adjacent

nodes.

Degree of the Node

A degree of a node is the number of edges that are connected with that node. A node with degree 0 is called as

isolated node.

Transitive closure

• Given a directed graph, find out if a vertex j is reachable from another vertex i for all vertex pairs (i, j) in

the given graph. Here reachable mean that there is a path from vertex i to j. The reach-ability matrix is

called the transitive closure of a graph.

• For example, consider below graph (with loop)

Alternative method: (without loop)

 Compiled by: Er. Sandesh S Poudel

Warshall’s algorithm for finding transitive closure from diagraph

• In wars hall's algorithm we construct a sequence of Boolean matrices A = W[0], W[1],

W[2],….W[n] =T, where A is adjacency matrix and T is its transitive closure. This can be done from

digraph D as follows.

• [W[1]]i,j = 1 if and only if there is a path from vi to vj with elements of a subset of {v1} as interior vertices.

• [W[2]]i,j =1 if and only if there is a path from vi to vj with elements of a subset of {v1 ,v2} as interior

vertices.

Continuing this process, we generalized to

• [W[k]]i,j = 1 if and only if there is a path from vi to vj with elements of a subset of

{v1,v2,….vk} as interior vertices.

Application of Warshall's algorithm to the directed graph

In order to understand this, we will use a graph, which is described as follow:

For this graph R(0) will be looked like this:

Here R(0) shows the adjacency matrix. In R(0), we can see the existence of a path, which has no intermediate

vertices. We will get R(1) with the help of a boxed row and column in R(0).

 Compiled by: Er. Sandesh S Poudel

In R(1), we can see the existence of a path, which has intermediate vertices. The number of the vertices is not

greater than 1, which means just a vertex. It contains a new path from d to b. We will get R(2) with the help of a

boxed row and column in R(1).

In R(2), we can see the existence of a path, which has intermediate vertices. The number of the vertices is not

greater than 2, which means a and b. It contains two new paths. We will get R(3) with the help of a boxed row

and column in R(2).

In R(3), we can see the existence of a path, which has intermediate vertices. The number of the vertices is not

greater than 3, which means a, b and c. It does not contain any new paths. We will get R(4) with the help of a

boxed row and column in R(3).

In R(4), we can see the existence of a path, which has intermediate vertices. The number of the vertices is not

greater than 4, which means a, b, c and d. It contains five new paths.

 Compiled by: Er. Sandesh S Poudel

Example:

Example:(with loop)

 Compiled by: Er. Sandesh S Poudel

Graph Traversals

Breadth First Search (BFS)

• Given an input graph G = (V, E) and a source vertex S, from where the searching starts. The breadth first

search systematically traverses the edges of G to explore every vertex that is reachable from S.

• Then we examine the entire vertices neighbour to source vertex S. Then we traverse all the neighbours of

the neighbours of source vertex S and so on. A queue is used to keep track of the progress of traversing

the neighbour nodes.

• Considered the following Figure for breadth first search traversing.

 Compiled by: Er. Sandesh S Poudel

Example:

Use breadth first search to find a BFS tree of the following graph

 Compiled by: Er. Sandesh S Poudel

Algorithm:

BFS(G,s) //s is start vertex

{

T = {s};

L =Φ; //an empty queue Enqueue(L,s);

while (L != Φ)

{

v = dequeue(L); for each neighbor w to v

if (w∉ L and w ∉ T)

{ enqueue(L,w);

T = T U {w}; //put edge {v,w} also

}

}

}

Analysis

 Compiled by: Er. Sandesh S Poudel

From the algorithm above all the vertices are put once in the queue and they are accessed. For each accessed

vertex from the queue their adjacent vertices are looked for and this can be done in O(n) time(for the worst case

the graph is complete). This computation for all the possible vertices that may be in the queue i.e. n, produce

complexity of an algorithm as O(n2).

Depth First Search (DFS)

• The depth first search (DFS), as its name suggest, is to search deeper in the graph, whenever possible.

• Given an input graph G = (V, E) and a source vertex S, from where the searching starts. First we visit the

starting node. Then we travel through each node along a path, which begins at S. That is we visit a neighbour

vertex of S and again a neighbour of a neighbour of S, and so on. The implementation of

• BFS is almost same except a stack is used instead of the queue.

The following steps will illustrate the DFS:

 Compiled by: Er. Sandesh S Poudel

Example: Use depth first search to find a spanning tree of the following graph.

 Compiled by: Er. Sandesh S Poudel

 Compiled by: Er. Sandesh S Poudel

Analysis:

The complexity of the algorithm is greatly affected by Traverse function we can write its running time in terms

of the relation T(n) = T(n-1) + O(n), here O(n) is for each vertex at most all the vertices are checked (for loop).

At each recursive call a vertex is decreased. Solving this we can find that the complexity of an algorithm is O(n2).

Topological Sort

Topological sorting for Directed Acyclic Graph (DAG)(directed graph with no directed cycles) is a linear

ordering of vertices such that for every directed edge uv, vertex u comes before v in the ordering. Topological

Sorting for a graph is not possible if the graph is not a DAG. Two Different algorithm are used: DFS and BFS.

Here's an example:

Since node 1 points to nodes 2 and 3, node 1 appears before them in the ordering. And, since nodes 2 and 3 both

point to node 4, they appear before it in the ordering.

 Compiled by: Er. Sandesh S Poudel

So [1, 2, 3, 4, 5] would be a topological ordering of the graph.

Example:

• For example, a topological sorting of the following graph is “5 4 2 3 1 0”.

• There can be more than one topological sorting for a graph.

• For example, another topological sorting of the following graph is “4 5 2 3 1 0”.

Minimum Spanning Tree

• Given a connected and undirected graph, a spanning tree of that graph is a subgraph that is a tree and

connects all the vertices together.

• A single graph can have many different spanning trees.

• A minimum spanning tree (MST) or minimum weight spanning tree for a weighted, connected and

undirected graph is a spanning tree with weight less than or equal to the weight of every other spanning

tree.

• The weight of a spanning tree is the sum of weights given to each edge of the spanning tree.

Example of minimum spanning tree

Let's understand the minimum spanning tree with the help of an example.

 Compiled by: Er. Sandesh S Poudel

The sum of the edges of the above graph is 16. Now, some of the possible spanning trees created from the above

graph are -

So, the minimum spanning tree that is selected from the above spanning trees for the given weighted graph is -

 Compiled by: Er. Sandesh S Poudel

Kruskal’s algorithm

The problem of finding MST can be solved by using Kruskal’s algorithm. The idea behind this algorithm is that

you put the set of edges form the given graph G = (V,E) in nondecreasing order of their weights. The selection

of each edge in sequence then guarantees that the total cost that would from will be the minimum. Note that we

have G as a graph, V as a set of n vertices and E as set of edges of graph G.

• Below are the steps for finding MST using Kruskal’s algorithm

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not

formed, include this edge. Else, discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

Example of Kruskal's algorithm

Now, let's see the working of Kruskal's algorithm using an example. It will be easier to understand Kruskal's

algorithm using an example.

Suppose a weighted graph is -

The weight of the edges of the above graph is given in the below table -

Edge AB AC AD AE BC CD DE

Weight 1 7 10 5 3 4 2

Now, sort the edges given above in the ascending order of their weights.

Edge AB DE BC CD AE AC AD

Weight 1 2 3 4 5 7 10

 Compiled by: Er. Sandesh S Poudel

Now, let's start constructing the minimum spanning tree.

Step 1 - First, add the edge AB with weight 1 to the MST.

Step 2 - Add the edge DE with weight 2 to the MST as it is not creating the cycle.

Step 3 - Add the edge BC with weight 3 to the MST, as it is not creating any cycle or loop.

 Compiled by: Er. Sandesh S Poudel

Step 4 - Now, pick the edge CD with weight 4 to the MST, as it is not forming the cycle.

Step 5 - After that, pick the edge AE with weight 5. Including this edge will create the cycle, so discard it.

Step 6 - Pick the edge AC with weight 7. Including this edge will create the cycle, so discard it.

Step 7 - Pick the edge AD with weight 10. Including this edge will also create the cycle, so discard it.

So, the final minimum spanning tree obtained from the given weighted graph by using Kruskal's algorithm is -

The cost of the MST is = AB + DE + BC + CD = 1 + 2 + 3 + 4 = 10.

Now, the number of edges in the above tree equals the number of vertices minus 1. So, the algorithm stops here.

Example: Find the Minimum Spanning Tree of the following graph using Kruskal's algorithm.

 Compiled by: Er. Sandesh S Poudel

Solution: First we initialize the set A to the empty set and create |v| trees, one containing each vertex with MAKE-

SET procedure. Then sort the edges in E into order by non-decreasing weight.

There are 9 vertices and 12 edges. So MST formed (9-1) = 8 edges

Now, check for each edge (u, v) whether the endpoints u and v belong to the same tree. If they do then the edge

(u, v) cannot be supplementary. Otherwise, the two vertices belong to different trees, and the edge (u, v) is added

to A, and the vertices in two trees are merged in by union procedure.

Step1: So, first take (h, g) edge

Step 2: then (g, f) edge.

 Compiled by: Er. Sandesh S Poudel

Step 3: then (a, b) and (i, g) edges are considered, and the forest becomes

Step 4: Now, edge (h, i). Both h and i vertices are in the same set. Thus it creates a cycle. So this edge is discarded.

 Then edge (c, d), (b, c), (a, h), (d, e), (e, f) are considered, and the forest becomes.

Step 5: In (e, f) edge both endpoints e and f exist in the same tree so discarded this edge. Then (b, h) edge, it also

creates a cycle.

Step 6: After that edge (d, f) and the final spanning tree is shown as in dark lines.

 Compiled by: Er. Sandesh S Poudel

Step 7: This step will be required Minimum Spanning Tree because it contains all the 9 vertices and (9 - 1) = 8

edges

e → f, b → h, d → f [cycle will be formed]

Minimum Cost MST=1+2+6+8+4+8+7+9=45

Example:

Find the MST and its weight of the graph.

Solution:

 Compiled by: Er. Sandesh S Poudel

The total weight of MST is 64.

Example 2: Let us understand it with an example: Consider the below input graph.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 – 1) = 8

edges.

 Compiled by: Er. Sandesh S Poudel

Step 1:

Step 2:

Step 3:

 Compiled by: Er. Sandesh S Poudel

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

 Compiled by: Er. Sandesh S Poudel

Algorithm:

KruskalMST(G)

{

T = {V} // forest of n nodes

S = set of edges sorted in nondecreasing order of weightwhile(|T| < n-1 and E !=Æ)

{

Select (u,v) from S in order Remove (u,v)

from E

if((u,v) doesnot create a cycle in T))

T = T È {(u,v)}

}

}

Analysis:

In the above algorithm the n tree forest at the beginning takes (V) time, the creation of set S takes O(ElogE) time

and while loop execute O(n) times and the steps inside the loop take almost linear time (see disjoint set

operations; find and union). So the total time taken is O(ElogE)

Prim’s Algorithm

Algorithm

1. Create a set mstSet that keeps track of vertices already included in MST.

2. Assign a key value to all vertices in the input graph. Initialize all key values as INFINITE. Assign key value

as 0 for the first vertex so that it is picked first.

3. While mstSet doesn’t include all vertices

• Pick a vertex u which is not there in mstSet and has minimum key value.

• Include u to mstSet.

• Update key value of all adjacent vertices of u. To update the key values, iterate through

all adjacent vertices. For every adjacent vertex v, if weight of edge u-v is less than the

previous key value of v, update the key value as weight of u-v

 Compiled by: Er. Sandesh S Poudel

Example of prim's algorithm

Now, let's see the working of prim's algorithm using an example. It will be easier to understand the prim's

algorithm using an example.

Suppose, a weighted graph is -

Step 1 - First, we have to choose a vertex from the above graph. Let's choose B.

Step 2 - Now, we have to choose and add the shortest edge from vertex B. There are two edges from vertex B

that are B to C with weight 10 and edge B to D with weight 4. Among the edges, the edge BD has the minimum

weight. So, add it to the MST.

 Compiled by: Er. Sandesh S Poudel

Step 3 - Now, again, choose the edge with the minimum weight among all the other edges. In this case, the edges

DE and CD are such edges. Add them to MST and explore the adjacent of C, i.e., E and A. So, select the edge

DE and add it to the MST.

Step 4 - Now, select the edge CD, and add it to the MST.

Step 5 - Now, choose the edge CA. Here, we cannot select the edge CE as it would create a cycle to the graph.

So, choose the edge CA and add it to the MST.

 Compiled by: Er. Sandesh S Poudel

So, the graph produced in step 5 is the minimum spanning tree of the given graph. The cost of the MST is given

below -

Cost of MST = 4 + 2 + 1 + 3 = 10 units.

Question: Generate minimum cost spanning tree for the following graph using Prim's algorithm.

Answer: Thus the final spanning Tree is

Total Cost = 10 + 25 + 22 + 12 + 16 + 14 = 99

Question:

 Compiled by: Er. Sandesh S Poudel

Answer:

 Total cost: 4+8+1+2+4+2+7+9=37

 Round Robin Algorithm

• This method provides better performance when the number of edges is low. Initially each node is

considered to be a partial tree. Each partial tree is maintained in a queue Q.

• Priority queue is associated with each partial tree, which contains all the arcs ordered by their weights.

• The algorithm proceeds by removing a partial tree, T1, from the front of Q, finding the minimum weight

arc a in T1; deleting from Q, the tree T2, at the other end of arc a; combining T1 and T2 into a single new

tree T3 and at the same time combining priority queues of T1 and T2 and adding T3 at the rear of priority

queue.

• This continues until Q contains a single tree, the minimum spanning tree.

 Compiled by: Er. Sandesh S Poudel

 Compiled by: Er. Sandesh S Poudel

• Only 1 partial tree is left in the queue, which is the required minimum spanning tree.

Shortest path algorithm

Greedy Algorithm

• A greedy algorithm is a simple, intuitive algorithm that is used in optimization problems. The algorithm

makes the optimal choice at each step as it attempts to find the overall optimal way to solve the entire

problem.

• Greedy algorithms are quite successful in some problems, such as Huffman encoding which is used to

compress data, or Dijkstra's algorithm, which is used to find the shortest path through a graph.

Consider the graph which is given below:

We have to travel from the source to the destination at the minimum cost. Since we have three feasible solutions

having cost paths as 10, 20, and 5. 5 is the minimum cost path so it is the optimal solution. This is the local

optimum, and in this way, we find the local optimum at each stage in order to calculate the global optimal

solution.

Dijkstra’s shortest path algorithm

Given a graph and a source vertex in the graph, find shortest paths from source to all vertices in the given graph.

Algorithm

1. Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree, i.e.,

whose minimum distance from source is calculated and finalized. Initially, this set is empty.

2. Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE. Assign

distance value as 0 for the source vertex so that it is picked first.

3. While sptSet doesn’t include all vertices

 Compiled by: Er. Sandesh S Poudel

a. Pick a vertex u which is not there in sptSet and has minimum distance value.

b. Include u to sptSet.

c. Update distance value of all adjacent vertices of u.

To update the distance values, iterate through all adjacent vertices. For every adjacent vertex v, if sum of distance

value of u (from source) and weight of edge u-v, is less than the distance value of v, then update the distance

value of v.

Example of Dijkstra's algorithm

It is easier to start with an example and then think about the algorithm.

Start with a weighted graph

Choose a starting vertex and assign infinity path values to all other devices

 Compiled by: Er. Sandesh S Poudel

Go to each vertex and update its path length

If the path length of the adjacent vertex is lesser than new path length, don't update it

Avoid updating path lengths of already visited vertices

 Compiled by: Er. Sandesh S Poudel

After each iteration, we pick the unvisited vertex with the least path length. So we choose 5 before 7

Notice how the rightmost vertex has its path length updated twice

Repeat until all the vertices have been visited

 Compiled by: Er. Sandesh S Poudel

 Compiled by: Er. Sandesh S Poudel

